Fixation can change the appearance of phase separation in living cells

  1. Shawn Irgen-Gioro
  2. Shawn Ryohei Yoshida
  3. Victoria Walling
  4. Shasha Chong  Is a corresponding author
  1. California Institute of Technology, United States

Abstract

Fixing cells with paraformaldehyde (PFA) is an essential step in numerous biological techniques as it is thought to preserve a snapshot of biomolecular transactions in living cells. Fixed cell imaging techniques such as immunofluorescence have been widely used to detect liquid-liquid phase separation (LLPS) in vivo. Here, we compared images, before and after fixation, of cells expressing intrinsically disordered proteins that are able to undergo LLPS. Surprisingly, we found that PFA fixation can both enhance and diminish putative LLPS behaviors. For specific proteins, fixation can even cause their droplet-like puncta to artificially appear in cells that do not have any detectable puncta in the live condition. Fixing cells in the presence of glycine, a molecule that modulates fixation rates, can reverse the fixation effect from enhancing to diminishing LLPS appearance. We further established a kinetic model of fixation in the context of dynamic protein-protein interactions. Simulations based on the model suggest that protein localization in fixed cells depends on an intricate balance of protein-protein interaction dynamics, the overall rate of fixation, and notably, the difference between fixation rates of different proteins. Consistent with simulations, live-cell single-molecule imaging experiments showed that a fast overall rate of fixation relative to protein-protein interaction dynamics can minimize fixation artifacts. Our work reveals that PFA fixation changes the appearance of LLPS from living cells, presents a caveat in studying LLPS using fixation-based methods, and suggests a mechanism underlying the fixation artifact.

Data availability

Figure 1 - Source Data 1, Figure 2 - Source Data 1, Figure 3 - Source Data 1, and Figure 6 - Source Data 1 contain the numerical data used to generate the figures. Custom scripts have been uploaded as source code files.

Article and author information

Author details

  1. Shawn Irgen-Gioro

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8638-6191
  2. Shawn Ryohei Yoshida

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victoria Walling

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shasha Chong

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    schong@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5372-311X

Funding

Shurl and Key Curci Foundation (Research Grant)

  • Shasha Chong

John D. Baldeschwieler and Marlene R. Konnar Foundation

  • Shasha Chong

Pew-Stewart Scholars Program for Cancer Research

  • Shasha Chong

Searle Scholars Program

  • Shasha Chong

Merkin Institute for Translational Research (Merkin Innovation Seed Grant)

  • Shasha Chong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Irgen-Gioro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,695
    views
  • 1,200
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shawn Irgen-Gioro
  2. Shawn Ryohei Yoshida
  3. Victoria Walling
  4. Shasha Chong
(2022)
Fixation can change the appearance of phase separation in living cells
eLife 11:e79903.
https://doi.org/10.7554/eLife.79903

Share this article

https://doi.org/10.7554/eLife.79903

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.