Deep mutational scanning and machine learning reveal structural and molecular rules governing allosteric hotspots in homologous proteins

  1. Megan Leander
  2. Zhuang Liu
  3. Qiang Cui  Is a corresponding author
  4. Srivatsan Raman  Is a corresponding author
  1. University of Wisconsin-Madison, United States
  2. Boston University, United States

Abstract

A fundamental question in protein science is where allosteric hotspots - residues critical for allosteric signaling - are located, and what properties differentiate them. We carried out deep mutational scanning (DMS) of four homologous bacterial allosteric transcription factors (aTF) to identify hotspots and built a machine learning model with this data to glean the structural and molecular properties of allosteric hotspots. We found hotspots to be distributed protein-wide rather than being restricted to 'pathways' linking allosteric and active sites as is commonly assumed. Despite structural homology, the location of hotspots was not superimposable across the aTFs. However, common signatures emerged when comparing hotspots coincident with long-range interactions, suggesting that the allosteric mechanism is conserved among the homologs despite differences in molecular details. Machine learning with our large DMS datasets revealed that global structural and dynamic properties to be a strong predictor of whether a residue is a hotspot than local and physicochemical properties. Furthermore, a model trained on one protein can predict hotspots in a homolog. In summary, the overall allosteric mechanism is embedded in the structural fold of the aTF family, but the finer, molecular details are sequence-specific.

Data availability

Data included in the manuscript

Article and author information

Author details

  1. Megan Leander

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    No competing interests declared.
  2. Zhuang Liu

    Department of Physics, Boston University, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4695-7142
  3. Qiang Cui

    Department of Physics, Boston University, Boston, United States
    For correspondence
    qiangcui@bu.edu
    Competing interests
    Qiang Cui, Reviewing editor, eLife.
  4. Srivatsan Raman

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    For correspondence
    sraman4@wisc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2461-1589

Funding

National Institutes of Health (DP2GM132682)

  • Srivatsan Raman

National Institutes of Health (R35GM141930)

  • Qiang Cui

National Institutes of Health (T32GM08293)

  • Megan Leander

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Leander et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,481
    views
  • 912
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Megan Leander
  2. Zhuang Liu
  3. Qiang Cui
  4. Srivatsan Raman
(2022)
Deep mutational scanning and machine learning reveal structural and molecular rules governing allosteric hotspots in homologous proteins
eLife 11:e79932.
https://doi.org/10.7554/eLife.79932

Share this article

https://doi.org/10.7554/eLife.79932

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.