Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales

  1. Anton A Polyansky  Is a corresponding author
  2. Laura D Gallego
  3. Roman G Efremov
  4. Alwin Köhler
  5. Bojan Zagrovic  Is a corresponding author
  1. University of Vienna, Austria
  2. Medical University of Vienna, Austria
  3. Russian Academy of Sciences, Russian Federation

Abstract

Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The S. cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modelled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files (Supplementary Files 1 and 2); source data files have been provided for Figure 2 (Figure 2 -source data 1), Figure 1-figure supplement 1 (Figure 1-figure supplement 1-source data 2), Figure 1-figure supplement 2 (Figure 1-figure supplement 2-source data 1), Figure 5-figure supplement 2 (Figure 5-figure supplement 2-source data 1); compressed folders containing source data files have been provided for Figure 1 (Figure 1 -source data 1), Figure 2 (Figure 2 -source data 2), Figure 3 (Figure 3 -source data 1), Figure 4 (Figure 4 -source data 1), Figure 5 (Figure 5 -source data 1), Figure 6 (Figure 6 -source data 1), Figure 1-figure supplement 1 (Figure 1-figure supplement 1-source data 1), Figure 2-figure supplement 1 (Figure 2-figure supplement 1-source data 1), Figure 3-figure supplement 1 (Figure 3-figure supplement 1-source data 1), Figure 4-figure supplement 1 (Figure 4-figure supplement 1-source data 1), Figure 6-figure supplement 1 (Figure 6-figure supplement 1-source data 1). These source files contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Anton A Polyansky

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    For correspondence
    anton.polyansky@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1011-2706
  2. Laura D Gallego

    Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Roman G Efremov

    Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Alwin Köhler

    Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Bojan Zagrovic

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    For correspondence
    bojan.zagrovic@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Funding

Austrian Science Fund (P 30550)

  • Bojan Zagrovic

Austrian Science Fund (P 30680-B21)

  • Bojan Zagrovic

NOMIS Stiftung (Pioneering Research Grant)

  • Alwin Köhler

Austrian Science Fund (F79)

  • Alwin Köhler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rohit V Pappu, Washington University in St Louis, United States

Version history

  1. Preprint posted: February 19, 2022 (view preprint)
  2. Received: May 6, 2022
  3. Accepted: July 18, 2023
  4. Accepted Manuscript published: July 20, 2023 (version 1)
  5. Version of Record published: August 7, 2023 (version 2)
  6. Version of Record updated: August 16, 2023 (version 3)

Copyright

© 2023, Polyansky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,377
    views
  • 219
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton A Polyansky
  2. Laura D Gallego
  3. Roman G Efremov
  4. Alwin Köhler
  5. Bojan Zagrovic
(2023)
Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales
eLife 12:e80038.
https://doi.org/10.7554/eLife.80038

Share this article

https://doi.org/10.7554/eLife.80038

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Qin Ni, Sean X Sun
    Insight

    An influx of water molecules can help immune cells called neutrophils to move to where they are needed in the body.

    1. Cell Biology
    2. Physics of Living Systems
    Tamas L Nagy, Evelyn Strickland, Orion D Weiner
    Research Article

    While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury, and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes are not known. We combine single-cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.