Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales

  1. Anton A Polyansky  Is a corresponding author
  2. Laura D Gallego
  3. Roman G Efremov
  4. Alwin Köhler
  5. Bojan Zagrovic  Is a corresponding author
  1. University of Vienna, Austria
  2. Medical University of Vienna, Austria
  3. Russian Academy of Sciences, Russian Federation

Abstract

Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The S. cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modelled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files (Supplementary Files 1 and 2); source data files have been provided for Figure 2 (Figure 2 -source data 1), Figure 1-figure supplement 1 (Figure 1-figure supplement 1-source data 2), Figure 1-figure supplement 2 (Figure 1-figure supplement 2-source data 1), Figure 5-figure supplement 2 (Figure 5-figure supplement 2-source data 1); compressed folders containing source data files have been provided for Figure 1 (Figure 1 -source data 1), Figure 2 (Figure 2 -source data 2), Figure 3 (Figure 3 -source data 1), Figure 4 (Figure 4 -source data 1), Figure 5 (Figure 5 -source data 1), Figure 6 (Figure 6 -source data 1), Figure 1-figure supplement 1 (Figure 1-figure supplement 1-source data 1), Figure 2-figure supplement 1 (Figure 2-figure supplement 1-source data 1), Figure 3-figure supplement 1 (Figure 3-figure supplement 1-source data 1), Figure 4-figure supplement 1 (Figure 4-figure supplement 1-source data 1), Figure 6-figure supplement 1 (Figure 6-figure supplement 1-source data 1). These source files contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Anton A Polyansky

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    For correspondence
    anton.polyansky@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1011-2706
  2. Laura D Gallego

    Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Roman G Efremov

    Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Alwin Köhler

    Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Bojan Zagrovic

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    For correspondence
    bojan.zagrovic@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Funding

Austrian Science Fund (P 30550)

  • Bojan Zagrovic

Austrian Science Fund (P 30680-B21)

  • Bojan Zagrovic

NOMIS Stiftung (Pioneering Research Grant)

  • Alwin Köhler

Austrian Science Fund (F79)

  • Alwin Köhler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Polyansky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,743
    views
  • 247
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton A Polyansky
  2. Laura D Gallego
  3. Roman G Efremov
  4. Alwin Köhler
  5. Bojan Zagrovic
(2023)
Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales
eLife 12:e80038.
https://doi.org/10.7554/eLife.80038

Share this article

https://doi.org/10.7554/eLife.80038

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    David Trombley McSwiggen, Helen Liu ... Hilary P Beck
    Research Article

    The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging >106 cells/day and screening >104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

    1. Neuroscience
    2. Physics of Living Systems
    Iksoo Chang, Taegon Chung, Sangyeol Kim
    Research Article

    Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system Caenorhabditis elegans for which the structural anatomical connectome was completely known recently. We evaluated how strongly the sinusoidal wave was transmitted between arbitrary two cells in the model network. The region of cell-pairs that are good at transmitting waves changed according to the wavenumber of the wave, for which we named a wavenumber-dependent transmission map. Also, we unraveled that (1) the transmission of all cell-pairs disappeared beyond a threshold wavenumber, (2) long distance and regular patterned transmission existed in the body-wall muscles part of the model network, and (3) major hub cell-pairs of the transmission were identified for many wavenumber conditions. A theoretical and computational model presented in this study provided fundamental insight for understanding how the multi-path constructive/destructive interference of the subthreshold oscillations propagating on electrically coupled neural networks could generate wavenumber-dependent synchronized rhythmic activity.