Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales

  1. Anton A Polyansky  Is a corresponding author
  2. Laura D Gallego
  3. Roman G Efremov
  4. Alwin Köhler
  5. Bojan Zagrovic  Is a corresponding author
  1. University of Vienna, Austria
  2. Medical University of Vienna, Austria
  3. Russian Academy of Sciences, Russian Federation

Abstract

Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The S. cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modelled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files (Supplementary Files 1 and 2); source data files have been provided for Figure 2 (Figure 2 -source data 1), Figure 1-figure supplement 1 (Figure 1-figure supplement 1-source data 2), Figure 1-figure supplement 2 (Figure 1-figure supplement 2-source data 1), Figure 5-figure supplement 2 (Figure 5-figure supplement 2-source data 1); compressed folders containing source data files have been provided for Figure 1 (Figure 1 -source data 1), Figure 2 (Figure 2 -source data 2), Figure 3 (Figure 3 -source data 1), Figure 4 (Figure 4 -source data 1), Figure 5 (Figure 5 -source data 1), Figure 6 (Figure 6 -source data 1), Figure 1-figure supplement 1 (Figure 1-figure supplement 1-source data 1), Figure 2-figure supplement 1 (Figure 2-figure supplement 1-source data 1), Figure 3-figure supplement 1 (Figure 3-figure supplement 1-source data 1), Figure 4-figure supplement 1 (Figure 4-figure supplement 1-source data 1), Figure 6-figure supplement 1 (Figure 6-figure supplement 1-source data 1). These source files contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Anton A Polyansky

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    For correspondence
    anton.polyansky@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1011-2706
  2. Laura D Gallego

    Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Roman G Efremov

    Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Alwin Köhler

    Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Bojan Zagrovic

    Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
    For correspondence
    bojan.zagrovic@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Funding

Austrian Science Fund (P 30550)

  • Bojan Zagrovic

Austrian Science Fund (P 30680-B21)

  • Bojan Zagrovic

NOMIS Stiftung (Pioneering Research Grant)

  • Alwin Köhler

Austrian Science Fund (F79)

  • Alwin Köhler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Polyansky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,749
    views
  • 247
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anton A Polyansky
  2. Laura D Gallego
  3. Roman G Efremov
  4. Alwin Köhler
  5. Bojan Zagrovic
(2023)
Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales
eLife 12:e80038.
https://doi.org/10.7554/eLife.80038

Share this article

https://doi.org/10.7554/eLife.80038

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Marta Urbanska, Yan Ge ... Jochen Guck
    Research Article

    Cell mechanical properties determine many physiological functions, such as cell fate specification, migration, or circulation through vasculature. Identifying factors that govern the mechanical properties is therefore a subject of great interest. Here, we present a mechanomics approach for establishing links between single-cell mechanical phenotype changes and the genes involved in driving them. We combine mechanical characterization of cells across a variety of mouse and human systems with machine learning-based discriminative network analysis of associated transcriptomic profiles to infer a conserved network module of five genes with putative roles in cell mechanics regulation. We validate in silico that the identified gene markers are universal, trustworthy, and specific to the mechanical phenotype across the studied mouse and human systems, and demonstrate experimentally that a selected target, CAV1, changes the mechanical phenotype of cells accordingly when silenced or overexpressed. Our data-driven approach paves the way toward engineering cell mechanical properties on demand to explore their impact on physiological and pathological cell functions.

    1. Physics of Living Systems
    M Julia Maristany, Anne Aguirre Gonzalez ... Jerelle A Joseph
    Research Article

    Proteins containing prion-like low complexity domains (PLDs) are common drivers of the formation of biomolecular condensates and are prone to misregulation due to amino acid mutations. Here, we exploit the accuracy of our residue-resolution coarse-grained model, Mpipi, to quantify the impact of amino acid mutations on the stability of 140 PLD mutants from six proteins (hnRNPA1, TDP43, FUS, EWSR1, RBM14, and TIA1). Our simulations reveal the existence of scaling laws that quantify the range of change in the critical solution temperature of PLDs as a function of the number and type of amino acid sequence mutations. These rules are consistent with the physicochemical properties of the mutations and extend across the entire family tested, suggesting that scaling laws can be used as tools to predict changes in the stability of PLD condensates. Our work offers a quantitative lens into how the emergent behavior of PLD solutions vary in response to physicochemical changes of single PLD molecules.