Colour polymorphism associated with a gene duplication in male wood tiger moths

  1. Melanie N Brien  Is a corresponding author
  2. Anna Orteu
  3. Eugenie C Yen
  4. Juan A Galarza
  5. Jimi Kirvesoja
  6. Hannu Pakkanen
  7. Kazumasa Wakamatsu
  8. Chris D Jiggins
  9. Johanna Mappes
  1. University of Helsinki, Finland
  2. University of Cambridge, United Kingdom
  3. University of Oulu, Finland
  4. University of Jyväskylä, Finland
  5. Fujita Health University, Japan

Abstract

Colour is often used as an aposematic warning signal, with predator learning expected to lead to a single colour pattern within a population. However, there are many puzzling cases where aposematic signals are also polymorphic. The wood tiger moth, Arctia plantaginis, displays bright hindwing colours associated with unpalatability, and males have discrete colour morphs which vary in frequency between localities. In Finland, both white and yellow morphs can be found, and these colour morphs also differ in behavioural and life-history traits. Here, we show that male colour is linked to an extra copy of a yellow family gene that is only present in the white morphs. This white-specific duplication, which we name valkea, is highly upregulated during wing development. CRISPR targeting valkea resulted in editing of both valkea and its paralog, yellow-e, and led to the production of yellow wings. We also characterise the pigments responsible for yellow, white and black colouration, showing that yellow is partly produced by pheomelanins, while black is dopamine-derived eumelanin. Our results add to a growing number of studies on the genetic architecture of complex and seemingly paradoxical polymorphisms, and the role of gene duplications and structural variation in adaptive evolution.

Data availability

Scripts and data for the QTL, GWAS and DE analyses can be found at doi:10.5281/zenodo.8208751. RADseq, RNAseq data, and WGS of CRISPR samples were deposited to SRA under study accession number PRJNA937225. Raw sequencing data of wild samples has previously been deposited in ENA, study accession No. PRJEB36595.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Melanie N Brien

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    For correspondence
    mnbrien1@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3089-4776
  2. Anna Orteu

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Eugenie C Yen

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan A Galarza

    Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Jimi Kirvesoja

    Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannu Pakkanen

    Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8725-1931
  7. Kazumasa Wakamatsu

    Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1748-9001
  8. Chris D Jiggins

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7809-062X
  9. Johanna Mappes

    Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.

Funding

Academy of Finland (343356)

  • Melanie N Brien

Academy of Finland (345091 and 328474)

  • Johanna Mappes

BBSRC (046_BB_V0145X_1)

  • Chris D Jiggins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Brien et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,167
    views
  • 194
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melanie N Brien
  2. Anna Orteu
  3. Eugenie C Yen
  4. Juan A Galarza
  5. Jimi Kirvesoja
  6. Hannu Pakkanen
  7. Kazumasa Wakamatsu
  8. Chris D Jiggins
  9. Johanna Mappes
(2023)
Colour polymorphism associated with a gene duplication in male wood tiger moths
eLife 12:e80116.
https://doi.org/10.7554/eLife.80116

Share this article

https://doi.org/10.7554/eLife.80116

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.

    1. Evolutionary Biology
    William R Thomas, Troy Richter ... Liliana M Davalos
    Research Article

    Contrasting almost all other mammalian wintering strategies, Eurasian common shrews, Sorex araneus, endure winter by shrinking their brain, skull, and most organs, only to then regrow to breeding size the following spring. How such tiny mammals achieve this unique brain size plasticity while maintaining activity through the winter remains unknown. To discover potential adaptations underlying this trait, we analyzed seasonal differential gene expression in the shrew hypothalamus, a brain region that both regulates metabolic homeostasis and drastically changes size, and compared hypothalamus gene expression across species. We discovered seasonal variation in suites of genes involved in energy homeostasis and apoptosis, shrew-specific upregulation of genes involved in the development of the hypothalamic blood-brain barrier and calcium signaling, as well as overlapping seasonal and comparative gene expression divergence in genes implicated in the development and progression of human neurological and metabolic disorders, including CCDC22. With high metabolic rates and facing harsh winter conditions, S. araneus have evolved both adaptive and plastic mechanisms to sense and regulate their energy budget. Many of these changes mirrored those identified in human neurological and metabolic disease, highlighting the interactions between metabolic homeostasis, brain size plasticity, and longevity.