A CRISPR-screen in intestinal epithelial cells identifies novel factors for polarity and apical transport

Abstract

Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knock-out of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.

Data availability

Next generation sequencing data was made available in Dryadhttps://doi.org/10.5061/dryad.m0cfxpp62.Source Data files have been provided for Figure 3.

The following data sets were generated
    1. Vogel GF
    (2022) NGS raw sgRNA-counts
    Dryad Digital Repository, doi:10.5061/dryad.m0cfxpp62.

Article and author information

Author details

  1. Katharina MC Klee

    Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael W Hess

    Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Lohmüller

    Institute of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7712-3143
  4. Sebastian Herzog

    Institute of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Kristian Pfaller

    Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Müller

    Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Georg F Vogel

    Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    georg.vogel@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2515-4490
  8. Lukas A Huber

    Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    lukas.a.huber@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1116-2120

Funding

Austrian Science Fund (P35805-B)

  • Georg F Vogel

Austrian Academy of Science (DOC-Scholarship)

  • Katharina MC Klee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michel Bagnat, Duke University, United States

Publication history

  1. Received: May 10, 2022
  2. Preprint posted: May 17, 2022 (view preprint)
  3. Accepted: January 19, 2023
  4. Accepted Manuscript published: January 20, 2023 (version 1)
  5. Accepted Manuscript updated: January 23, 2023 (version 2)
  6. Version of Record published: January 31, 2023 (version 3)

Copyright

© 2023, Klee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 902
    Page views
  • 193
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katharina MC Klee
  2. Michael W Hess
  3. Michael Lohmüller
  4. Sebastian Herzog
  5. Kristian Pfaller
  6. Thomas Müller
  7. Georg F Vogel
  8. Lukas A Huber
(2023)
A CRISPR-screen in intestinal epithelial cells identifies novel factors for polarity and apical transport
eLife 12:e80135.
https://doi.org/10.7554/eLife.80135

Further reading

    1. Cancer Biology
    2. Cell Biology
    Elena Tomas Bort, Megan Daisy Joseph ... Richard Philip Grose
    Research Article

    Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response and immune function. Analysing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signalling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.

    1. Cell Biology
    Enric Gutiérrez-Martínez, Susana Benet Garrab ... Maria F Garcia-Parajo
    Research Article

    The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DC) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.