A CRISPR-screen in intestinal epithelial cells identifies novel factors for polarity and apical transport

Abstract

Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knock-out of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.

Data availability

Next generation sequencing data was made available in Dryadhttps://doi.org/10.5061/dryad.m0cfxpp62.Source Data files have been provided for Figure 3.

The following data sets were generated
    1. Vogel GF
    (2022) NGS raw sgRNA-counts
    Dryad Digital Repository, doi:10.5061/dryad.m0cfxpp62.

Article and author information

Author details

  1. Katharina MC Klee

    Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael W Hess

    Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Lohmüller

    Institute of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7712-3143
  4. Sebastian Herzog

    Institute of Developmental Immunology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Kristian Pfaller

    Institute of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Müller

    Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Georg F Vogel

    Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
    For correspondence
    georg.vogel@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2515-4490
  8. Lukas A Huber

    Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1116-2120

Funding

Austrian Science Fund (P35805-B)

  • Georg F Vogel

Austrian Academy of Science (DOC-Scholarship)

  • Katharina MC Klee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Klee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,362
    views
  • 341
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katharina MC Klee
  2. Michael W Hess
  3. Michael Lohmüller
  4. Sebastian Herzog
  5. Kristian Pfaller
  6. Thomas Müller
  7. Georg F Vogel
  8. Lukas A Huber
(2023)
A CRISPR-screen in intestinal epithelial cells identifies novel factors for polarity and apical transport
eLife 12:e80135.
https://doi.org/10.7554/eLife.80135

Share this article

https://doi.org/10.7554/eLife.80135

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.