Non-rapid eye movement sleep determines resilience to social stress
Abstract
Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.
Data availability
Data generated in this study are deposited in Dryad.
-
Non-rapid eye movement sleep determines resilience to social stressDryad Digital Repository, doi:10.5061/dryad.x0k6djhn4.
Article and author information
Author details
Funding
National Institute of General Medical Sciences (GM127260)
- J Christopher Ehlen
National Institute on Minority Health and Health Disparities (Pilot funding,MD007602)
- J Christopher Ehlen
National Institute of Neurological Disorders and Stroke (NS078410)
- Ketema N Paul
National Heart, Lung, and Blood Institute (Graduate Student Fellowship,HL103104)
- Brittany J Bush
National Heart, Lung, and Blood Institute (Graduate Student Fellowship,HL007901)
- Eva-Jeneé A Andrews
National Heart, Lung, and Blood Institute (Postdoctoral Fellowship,HL117929)
- Cloe L Gray
National Heart, Lung, and Blood Institute (Postdoctoral Fellowship,HL116077)
- Allison J Brager
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to a protocol (21-02) approved by the Morehouse School of Medicine institutional animal care and use committee (IACUC). All surgery was performed under isoflurane anesthesia, and analgesia was provided. Every effort was made to minimize pain and suffering.
Reviewing Editor
- Matthew N Hill, University of Calgary, Canada
Publication history
- Received: May 12, 2022
- Preprint posted: June 1, 2022 (view preprint)
- Accepted: September 21, 2022
- Accepted Manuscript published: September 23, 2022 (version 1)
- Accepted Manuscript updated: September 26, 2022 (version 2)
- Version of Record published: October 21, 2022 (version 3)
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,506
- Page views
-
- 343
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Neuroscience
How does wiring specificity of neural maps emerge during development? Formation of the adult Drosophila olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon- and adaptive optical lattice light-sheet microscope-based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.
-
- Neuroscience
Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.