Non-rapid eye movement sleep determines resilience to social stress normal

  1. Brittany J Bush
  2. Caroline Donnay
  3. Eva-Jeneé A Andrews
  4. Darielle Lewis-Sanders
  5. Cloe L Gray
  6. Zhimei Qiao
  7. Allison J Brager
  8. Hadiya Johnson
  9. Hamadi CS Brewer
  10. Sahil Sood
  11. Talib Saafir
  12. Morris Benveniste
  13. Ketema N Paul
  14. J Christopher Ehlen  Is a corresponding author
  1. Morehouse School of Medicine, United States
  2. Walter Reed Army Institute of Research, United States
  3. University of California, Los Angeles, United States

Abstract

Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.

Data availability

Data generated in this study are deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Brittany J Bush

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Caroline Donnay

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eva-Jeneé A Andrews

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Darielle Lewis-Sanders

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cloe L Gray

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhimei Qiao

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Allison J Brager

    Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hadiya Johnson

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hamadi CS Brewer

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sahil Sood

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Talib Saafir

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Morris Benveniste

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7070-1521
  13. Ketema N Paul

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0226-9559
  14. J Christopher Ehlen

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    For correspondence
    jehlen@msm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3223-9262

Funding

National Institute of General Medical Sciences (GM127260)

  • J Christopher Ehlen

National Institute on Minority Health and Health Disparities (Pilot funding,MD007602)

  • J Christopher Ehlen

National Institute of Neurological Disorders and Stroke (NS078410)

  • Ketema N Paul

National Heart, Lung, and Blood Institute (Graduate Student Fellowship,HL103104)

  • Brittany J Bush

National Heart, Lung, and Blood Institute (Graduate Student Fellowship,HL007901)

  • Eva-Jeneé A Andrews

National Heart, Lung, and Blood Institute (Postdoctoral Fellowship,HL117929)

  • Cloe L Gray

National Heart, Lung, and Blood Institute (Postdoctoral Fellowship,HL116077)

  • Allison J Brager

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to a protocol (21-02) approved by the Morehouse School of Medicine institutional animal care and use committee (IACUC). All surgery was performed under isoflurane anesthesia, and analgesia was provided. Every effort was made to minimize pain and suffering.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,828
    views
  • 542
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brittany J Bush
  2. Caroline Donnay
  3. Eva-Jeneé A Andrews
  4. Darielle Lewis-Sanders
  5. Cloe L Gray
  6. Zhimei Qiao
  7. Allison J Brager
  8. Hadiya Johnson
  9. Hamadi CS Brewer
  10. Sahil Sood
  11. Talib Saafir
  12. Morris Benveniste
  13. Ketema N Paul
  14. J Christopher Ehlen
(2022)
Non-rapid eye movement sleep determines resilience to social stress normal
eLife 11:e80206.
https://doi.org/10.7554/eLife.80206

Share this article

https://doi.org/10.7554/eLife.80206

Further reading

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.

    1. Neuroscience
    Mi-Seon Kong, Ethan Ancell ... Larry S Zweifel
    Research Article

    The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US. Valence and salience encoding of the conditioned stimulus (CS) was also observed, albeit to a lesser extent. These findings show that the CeA is a site of convergence for encoding oppositely valenced US information.