Non-rapid eye movement sleep determines resilience to social stress normal

  1. Brittany J Bush
  2. Caroline Donnay
  3. Eva-Jeneé A Andrews
  4. Darielle Lewis-Sanders
  5. Cloe L Gray
  6. Zhimei Qiao
  7. Allison J Brager
  8. Hadiya Johnson
  9. Hamadi CS Brewer
  10. Sahil Sood
  11. Talib Saafir
  12. Morris Benveniste
  13. Ketema N Paul
  14. J Christopher Ehlen  Is a corresponding author
  1. Morehouse School of Medicine, United States
  2. Walter Reed Army Institute of Research, United States
  3. University of California, Los Angeles, United States

Abstract

Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.

Data availability

Data generated in this study are deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Brittany J Bush

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Caroline Donnay

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eva-Jeneé A Andrews

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Darielle Lewis-Sanders

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Cloe L Gray

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhimei Qiao

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Allison J Brager

    Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hadiya Johnson

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Hamadi CS Brewer

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sahil Sood

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Talib Saafir

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Morris Benveniste

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7070-1521
  13. Ketema N Paul

    Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0226-9559
  14. J Christopher Ehlen

    Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States
    For correspondence
    jehlen@msm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3223-9262

Funding

National Institute of General Medical Sciences (GM127260)

  • J Christopher Ehlen

National Institute on Minority Health and Health Disparities (Pilot funding,MD007602)

  • J Christopher Ehlen

National Institute of Neurological Disorders and Stroke (NS078410)

  • Ketema N Paul

National Heart, Lung, and Blood Institute (Graduate Student Fellowship,HL103104)

  • Brittany J Bush

National Heart, Lung, and Blood Institute (Graduate Student Fellowship,HL007901)

  • Eva-Jeneé A Andrews

National Heart, Lung, and Blood Institute (Postdoctoral Fellowship,HL117929)

  • Cloe L Gray

National Heart, Lung, and Blood Institute (Postdoctoral Fellowship,HL116077)

  • Allison J Brager

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to a protocol (21-02) approved by the Morehouse School of Medicine institutional animal care and use committee (IACUC). All surgery was performed under isoflurane anesthesia, and analgesia was provided. Every effort was made to minimize pain and suffering.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,760
    views
  • 532
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brittany J Bush
  2. Caroline Donnay
  3. Eva-Jeneé A Andrews
  4. Darielle Lewis-Sanders
  5. Cloe L Gray
  6. Zhimei Qiao
  7. Allison J Brager
  8. Hadiya Johnson
  9. Hamadi CS Brewer
  10. Sahil Sood
  11. Talib Saafir
  12. Morris Benveniste
  13. Ketema N Paul
  14. J Christopher Ehlen
(2022)
Non-rapid eye movement sleep determines resilience to social stress normal
eLife 11:e80206.
https://doi.org/10.7554/eLife.80206

Share this article

https://doi.org/10.7554/eLife.80206

Further reading

    1. Neuroscience
    Cuong Pham, Yuji Komaki ... Dongdong Li
    Research Article

    Brain water homeostasis not only provides a physical protection, but also determines the diffusion of chemical molecules key for information processing and metabolic stability. As a major type of glia in brain parenchyma, astrocytes are the dominant cell type expressing aquaporin water channel. How astrocyte aquaporin contributes to brain water homeostasis in basal physiology remains to be understood. We report that astrocyte aquaporin 4 (AQP4) mediates a tonic water efflux in basal conditions. Acute inhibition of astrocyte AQP4 leads to intracellular water accumulation as optically resolved by fluorescence-translated imaging in acute brain slices, and in vivo by fiber photometry in mobile mice. We then show that aquaporin-mediated constant water efflux maintains astrocyte volume and osmotic equilibrium, astrocyte and neuron Ca2+ signaling, and extracellular space remodeling during optogenetically induced cortical spreading depression. Using diffusion-weighted magnetic resonance imaging (DW-MRI), we observed that in vivo inhibition of AQP4 water efflux heterogeneously disturbs brain water homeostasis in a region-dependent manner. Our data suggest that astrocyte aquaporin, though bidirectional in nature, mediates a tonic water outflow to sustain cellular and environmental equilibrium in brain parenchyma.

    1. Neuroscience
    Chad Heer, Mark Sheffield
    Research Article

    Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals’ running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal’s transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.