Transient regulation of focal adhesion via Tensin3 is required for nascent oligodendrocyte differentiation

  1. Emeric Merour
  2. Hatem Hmidan
  3. Corentine Marie
  4. Pierre-Henri Helou
  5. Haiyang Lu
  6. Antoine Potel
  7. Jean-Baptiste Hure
  8. Adrien Clavairoly
  9. Yi Ping Shih
  10. Salman Goudarzi
  11. Sebastien Dussaud
  12. philippe Ravassard
  13. Sassan Hafizi
  14. Su Hao Lo
  15. Bassem A Hassan
  16. Carlos Parras  Is a corresponding author
  1. Sorbonne Université, Inserm U1127, CNRS UMR 7225, France
  2. University of California, Davis, United States
  3. University of Portsmouth, United Kingdom

Abstract

The differentiation of oligodendroglia from oligodendrocyte precursor cells (OPCs) to complex and extensive myelinating oligodendrocytes (OLs) is a multistep process that involves largescale morphological changes with significant strain on the cytoskeleton. While key chromatin and transcriptional regulators of differentiation have been identified, their target genes responsible for the morphological changes occurring during OL myelination are still largely unknown. Here, we show that the regulator of focal adhesion, Tensin3 (Tns3), is a direct target gene of Olig2, Chd7, and Chd8, transcriptional regulators of OL differentiation. Tns3 is transiently upregulated and localized to cell processes of immature OLs, together with integrin-b1, a key mediator of survival at this transient stage. Constitutive Tns3 loss-of-function leads to reduced viability in mouse and humans, with surviving knockout mice still expressing Tns3 in oligodendroglia. Acute deletion of Tns3 in vivo, either in postnatal neural stem cells (NSCs) or in OPCs, leads to a two-fold reduction in OL numbers. We find that the transient upregulation of Tns3 is required to protect differentiating OPCs and immature OLs from cell death by preventing the upregulation of p53, a key regulator of apoptosis. Altogether, our findings reveal a specific time window during which transcriptional upregulation of Tns3 in immature OLs is required for OL differentiation likely by mediating integrin-b1 survival signaling to the actin cytoskeleton as OL undergo the large morphological changes required for their terminal differentiation.

Data availability

Sequencing data have been deposited in GEO under accession code GSE203295

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Emeric Merour

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Hatem Hmidan

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Corentine Marie

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pierre-Henri Helou

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Haiyang Lu

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Antoine Potel

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Jean-Baptiste Hure

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Adrien Clavairoly

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Ping Shih

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Salman Goudarzi

    School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Sebastien Dussaud

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5365-8338
  12. philippe Ravassard

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Sassan Hafizi

    School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4539-0888
  14. Su Hao Lo

    Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2675-9387
  15. Bassem A Hassan

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9533-4908
  16. Carlos Parras

    Paris Brain Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Paris, France
    For correspondence
    carlos.parras@icm-institute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0248-1752

Funding

National Multiple Sclerosis Society (NMSS RG-1501-02851)

  • Carlos Parras

Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques (ARSEP 2014,2015,2018,2019,2020)

  • Corentine Marie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed according to the guidelines and regulations of the Inserm ethical committees (authorization #A75-13-19) and animal experimentation license A75-17-72

Copyright

© 2022, Merour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,151
    views
  • 240
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emeric Merour
  2. Hatem Hmidan
  3. Corentine Marie
  4. Pierre-Henri Helou
  5. Haiyang Lu
  6. Antoine Potel
  7. Jean-Baptiste Hure
  8. Adrien Clavairoly
  9. Yi Ping Shih
  10. Salman Goudarzi
  11. Sebastien Dussaud
  12. philippe Ravassard
  13. Sassan Hafizi
  14. Su Hao Lo
  15. Bassem A Hassan
  16. Carlos Parras
(2022)
Transient regulation of focal adhesion via Tensin3 is required for nascent oligodendrocyte differentiation
eLife 11:e80273.
https://doi.org/10.7554/eLife.80273

Share this article

https://doi.org/10.7554/eLife.80273

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.