An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility

  1. Fernanda M Bosada
  2. Karel van Duijvenboden
  3. Alexandra E Giovou
  4. Mathilde R Rivaud
  5. Jae-Sun Uhm
  6. Arie O Verkerk
  7. Bastiaan J Boukens
  8. Vincent M Christoffels  Is a corresponding author
  1. Amsterdam University Medical Centers, Netherlands
  2. Yonsei University, Republic of Korea

Abstract

Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5. In both lines we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.

Data availability

Adult left atrial RNAseq and ATACseq have been deposited under GEO accession numbers GSE189342 and GSE189498.

The following data sets were generated

Article and author information

Author details

  1. Fernanda M Bosada

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Karel van Duijvenboden

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexandra E Giovou

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathilde R Rivaud

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Jae-Sun Uhm

    Department of Cardiology, Yonsei University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Arie O Verkerk

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2140-834X
  7. Bastiaan J Boukens

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Vincent M Christoffels

    Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
    For correspondence
    v.m.christoffels@amsterdamumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4131-2636

Funding

CVON project 2014-18 CONCOR-genes (Young Talent Program)

  • Fernanda M Bosada

CVON project 2014-18 CONCOR-genes

  • Vincent M Christoffels

Fondation Leducq (14CVD01)

  • Vincent M Christoffels

Dutch Cardiovascular Alliance (OUTREACH)

  • Vincent M Christoffels

ZonMw (TOP 91217061)

  • Vincent M Christoffels

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kalyanam Shivkumar, UCLA Health, United States

Ethics

Animal experimentation: Housing, husbandry, all animal care and experimental protocols were in accordance with guidelines310 from the Directive 2010/63/EU of the European Parliament and Dutch government. Protocols were311 approved by the Animal Experimental Committee of the Amsterdam University Medical Centers.312 Animal group sizes were determined based on previous experience.

Version history

  1. Preprint posted: May 14, 2022 (view preprint)
  2. Received: May 27, 2022
  3. Accepted: January 29, 2023
  4. Accepted Manuscript published: January 30, 2023 (version 1)
  5. Version of Record published: February 14, 2023 (version 2)

Copyright

© 2023, Bosada et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 921
    views
  • 164
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fernanda M Bosada
  2. Karel van Duijvenboden
  3. Alexandra E Giovou
  4. Mathilde R Rivaud
  5. Jae-Sun Uhm
  6. Arie O Verkerk
  7. Bastiaan J Boukens
  8. Vincent M Christoffels
(2023)
An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility
eLife 12:e80317.
https://doi.org/10.7554/eLife.80317

Share this article

https://doi.org/10.7554/eLife.80317

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.