Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways

  1. Alice L Herneisen
  2. Zhu-Hong Li
  3. Alex W Chan
  4. Silvia NJ Moreno
  5. Sebastian Lourido  Is a corresponding author
  1. Whitehead Institute for Biomedical Research, United States
  2. University of Georgia, United States

Abstract

Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan T. gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.

Data availability

All mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033765 and 10.6019/PXD033765. All other information is provided in the Supplementary Files.

The following data sets were generated

Article and author information

Author details

  1. Alice L Herneisen

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Zhu-Hong Li

    Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  3. Alex W Chan

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Silvia NJ Moreno

    Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-6295
  5. Sebastian Lourido

    Whitehead Institute for Biomedical Research, Cambridge, United States
    For correspondence
    lourido@wi.mit.edu
    Competing interests
    Sebastian Lourido, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5237-1095

Funding

National Institutes of Health (R01AI144369)

  • Sebastian Lourido

National Science Foundation (174530)

  • Alice L Herneisen

National Institutes of Health (R01AI128356)

  • Silvia NJ Moreno

National Institutes of Health (R21AI15493)

  • Silvia NJ Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: May 17, 2022
  2. Preprint posted: May 25, 2022 (view preprint)
  3. Accepted: August 17, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Accepted Manuscript updated: August 22, 2022 (version 2)
  6. Version of Record published: August 31, 2022 (version 3)

Copyright

© 2022, Herneisen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,637
    views
  • 412
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alice L Herneisen
  2. Zhu-Hong Li
  3. Alex W Chan
  4. Silvia NJ Moreno
  5. Sebastian Lourido
(2022)
Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways
eLife 11:e80336.
https://doi.org/10.7554/eLife.80336

Share this article

https://doi.org/10.7554/eLife.80336

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.