Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways

  1. Alice L Herneisen
  2. Zhu-Hong Li
  3. Alex W Chan
  4. Silvia NJ Moreno
  5. Sebastian Lourido  Is a corresponding author
  1. Whitehead Institute for Biomedical Research, United States
  2. University of Georgia, United States

Abstract

Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan T. gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.

Data availability

All mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033765 and 10.6019/PXD033765. All other information is provided in the Supplementary Files.

The following data sets were generated

Article and author information

Author details

  1. Alice L Herneisen

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Zhu-Hong Li

    Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  3. Alex W Chan

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Silvia NJ Moreno

    Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2041-6295
  5. Sebastian Lourido

    Whitehead Institute for Biomedical Research, Cambridge, United States
    For correspondence
    lourido@wi.mit.edu
    Competing interests
    Sebastian Lourido, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5237-1095

Funding

National Institutes of Health (R01AI144369)

  • Sebastian Lourido

National Science Foundation (174530)

  • Alice L Herneisen

National Institutes of Health (R01AI128356)

  • Silvia NJ Moreno

National Institutes of Health (R21AI15493)

  • Silvia NJ Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dominique Soldati-Favre, University of Geneva, Switzerland

Version history

  1. Received: May 17, 2022
  2. Preprint posted: May 25, 2022 (view preprint)
  3. Accepted: August 17, 2022
  4. Accepted Manuscript published: August 17, 2022 (version 1)
  5. Accepted Manuscript updated: August 22, 2022 (version 2)
  6. Version of Record published: August 31, 2022 (version 3)

Copyright

© 2022, Herneisen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,609
    views
  • 407
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alice L Herneisen
  2. Zhu-Hong Li
  3. Alex W Chan
  4. Silvia NJ Moreno
  5. Sebastian Lourido
(2022)
Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca2+-responsive pathways
eLife 11:e80336.
https://doi.org/10.7554/eLife.80336

Share this article

https://doi.org/10.7554/eLife.80336

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article Updated

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson’s disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.