Lack of evidence for increased transcriptional noise in aged tissues

  1. Olga Ibañez-Solé
  2. Alex M Ascensión
  3. Marcos J Araúzo-Bravo  Is a corresponding author
  4. Ander Izeta  Is a corresponding author
  1. Biodonostia Health Research Institute, Spain

Abstract

Aging is often associated with a loss of cell type identity that results in an increase in transcriptional noise in aged tissues. If this phenomenon reflects a fundamental property of aging remains an open question. Transcriptional changes at the cellular level are best detected by single-cell RNA sequencing (scRNAseq). However, the diverse computational methods used for the quantification of age-related loss of cellular identity have prevented reaching meaningful conclusions by direct comparison of existing scRNAseq datasets. To address these issues we created Decibel, a Python toolkit that implements side-to-side four commonly used methods for the quantification of age-related transcriptional noise in scRNAseq data. Additionally, we developed Scallop, a novel computational method for the quantification of membership of single cells to their assigned cell type cluster. Cells with a greater Scallop membership score are transcriptionally more stable. Application of these computational tools to seven aging datasets showed large variability between tissues and datasets, suggesting that increased transcriptional noise is not a universal hallmark of aging. To understand the source of apparent loss of cell type identity associated with aging, we analyzed cell type-specific changes in transcriptional noise and the changes in cell type composition of the mammalian lung. No robust pattern of cell type-specific transcriptional noise alteration was found across aging lung datasets. In contrast, age-associated changes in cell type composition of the lung were consistently found, particularly of immune cells. These results suggest that claims of increased transcriptional noise of aged tissues should be reformulated.

Data availability

Code availabilityThe Decibel and Scallop repositories can be found at https://gitlab.com/olgaibanez/decibel and https: //gitlab.com/olgaibanez/scallop, respectively. The reproducible Jupyter notebooks with the analyses carried out in this study can be found in figshare (https://doi.org/10.6084/m9.figshare.20402817.v1).

The following previously published data sets were used

Article and author information

Author details

  1. Olga Ibañez-Solé

    Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, San Sebastian, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0552-9793
  2. Alex M Ascensión

    Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, San Sebastian, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Marcos J Araúzo-Bravo

    Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, San Sebastian, Spain
    For correspondence
    mararabra@yahoo.co.uk
    Competing interests
    The authors declare that no competing interests exist.
  4. Ander Izeta

    Tissue Engineering Laboratory, Biodonostia Health Research Institute, San Sebastian, Spain
    For correspondence
    ander.izeta@biodonostia.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1879-7401

Funding

la Caixa" Foundation " (LCF/BQ/IN18/11660065)

  • Olga Ibañez-Solé

Instituto de Salud Carlos III (AC17/00012)

  • Olga Ibañez-Solé
  • Alex M Ascensión
  • Ander Izeta

Instituto de Salud Carlos III (PI19/01621)

  • Olga Ibañez-Solé
  • Alex M Ascensión
  • Ander Izeta

Ministerio de Ciencia e Innovación (PID2020-119715GB-I00)

  • Olga Ibañez-Solé
  • Alex M Ascensión
  • Ander Izeta

European Regional Development Fund (MCIN/AEI/10.13039/501100011033)

  • Olga Ibañez-Solé
  • Alex M Ascensión
  • Ander Izeta

H2020 Marie Skłodowska-Curie Actions (713673)

  • Olga Ibañez-Solé

Eusko Jaurlaritza (PRE_2020_2_0081)

  • Alex M Ascensión

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Ibañez-Solé et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,759
    views
  • 382
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.80380

Further reading

    1. Computational and Systems Biology
    George N Bendzunas, Dominic P Byrne ... Natarajan Kannan
    Research Article

    In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.