Regulation of store-operated Ca2+ entry by IP3 receptors independent of their ability to release Ca2+

  1. Pragnya Chakraborty
  2. Bipan Kumar Deb
  3. Vikas Arige
  4. Thasneem Musthafa
  5. Sundeep Malik
  6. David I Yule
  7. Colin W Taylor  Is a corresponding author
  8. Gaiti Hasan  Is a corresponding author
  1. National Centre for Biological Sciences, India
  2. University of California, Berkeley, United States
  3. University of Rochester, United States
  4. University of Cambridge, United Kingdom

Abstract

Loss of endoplasmic reticular (ER) Ca2+ activates store-operated Ca2+ entry (SOCE) by causing the ER localized Ca2+ sensor STIM to unfurl domains that activate Orai channels in the plasma membrane at membrane contact sites (MCS). Here we demonstrate a novel mechanism by which the inositol 1,4,5 trisphosphate receptor (IP3R), an ER-localized IP3-gated Ca2+ channel, regulates neuronal SOCE. In human neurons, SOCE evoked by pharmacological depletion of ER-Ca2+ is attenuated by loss of IP3Rs, and restored by expression of IP3Rs even when they cannot release Ca2+, but only if the IP3Rs can bind IP3. Imaging studies demonstrate that IP3Rs enhance association of STIM1 with Orai1 in neuronal cells with empty stores; this requires an IP3-binding site, but not a pore. Convergent regulation by IP3Rs, may tune neuronal SOCE to respond selectively to receptors that generate IP3.

Data availability

The data supporting the findings of this study are available within the manuscript. All other data supporting the findings of this study are available in source data file of respective figures.

Article and author information

Author details

  1. Pragnya Chakraborty

    Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Bipan Kumar Deb

    Department of Molecular and Cell Biology, University of California, Berkeley, California, United States
    Competing interests
    No competing interests declared.
  3. Vikas Arige

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
  4. Thasneem Musthafa

    Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bangalore, India
    Competing interests
    No competing interests declared.
  5. Sundeep Malik

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
  6. David I Yule

    Department of Pharmacology and Physiology, University of Rochester, Rochester, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6743-0668
  7. Colin W Taylor

    Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    cwt1000@cam.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7771-1044
  8. Gaiti Hasan

    Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bangalore, India
    For correspondence
    gaiti@ncbs.res.in
    Competing interests
    Gaiti Hasan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-383X

Funding

Department of Science and Technology, Ministry of Science and Technology, India (DST/INSPIRE Fellowship/2017/IF170360)

  • Pragnya Chakraborty

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR6371/COE/34/19/2013)

  • Gaiti Hasan

Tata Institute of Fundamental Research (NCBS,TIFR core support)

  • Gaiti Hasan

Wellcome Trust (101844)

  • Colin W Taylor

Biotechnology and Biological Sciences Research Council (BB/T012986/1)

  • Colin W Taylor

NIH (DE014756)

  • David I Yule

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Chakraborty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,676
    views
  • 311
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pragnya Chakraborty
  2. Bipan Kumar Deb
  3. Vikas Arige
  4. Thasneem Musthafa
  5. Sundeep Malik
  6. David I Yule
  7. Colin W Taylor
  8. Gaiti Hasan
(2023)
Regulation of store-operated Ca2+ entry by IP3 receptors independent of their ability to release Ca2+
eLife 12:e80447.
https://doi.org/10.7554/eLife.80447

Share this article

https://doi.org/10.7554/eLife.80447

Further reading

    1. Cell Biology
    2. Neuroscience
    Sara Bitar, Timo Baumann ... Axel Methner
    Research Article

    Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain. Familial cases of PD are often caused by mutations of PTEN-induced kinase 1 (PINK1) and the ubiquitin ligase Parkin, both pivotal in maintaining mitochondrial quality control. CISD1, a homodimeric mitochondrial iron-sulfur-binding protein, is a major target of Parkin-mediated ubiquitination. We here discovered a heightened propensity of CISD1 to form dimers in Pink1 mutant flies and in dopaminergic neurons from PINK1 mutation patients. The dimer consists of two monomers that are covalently linked by a disulfide bridge. In this conformation CISD1 cannot coordinate the iron-sulfur cofactor. Overexpressing Cisd, the Drosophila orthologue of CISD1, and a mutant Cisd incapable of binding the iron-sulfur cluster in Drosophila reduced climbing ability and lifespan. This was more pronounced with mutant Cisd and aggravated in Pink1 mutant flies. Complete loss of Cisd, in contrast, rescued all detrimental effects of Pink1 mutation on climbing ability, wing posture, dopamine levels, lifespan, and mitochondrial ultrastructure. Our results suggest that Cisd, probably iron-depleted Cisd, operates downstream of Pink1 shedding light on PD pathophysiology and implicating CISD1 as a potential therapeutic target.

    1. Cell Biology
    2. Neuroscience
    Victor C Wong, Patrick R Houlihan ... Erin K O'Shea
    Research Article

    AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.