Disentangling the rhythms of human activity in the built environment for airborne transmission risk: an analysis of large-scale mobility data

  1. Zachary Susswein
  2. Eva C Rest
  3. Shweta Bansal  Is a corresponding author
  1. Georgetown University, United States

Abstract

Background: Since the outset of the COVID-19 pandemic, substantial public attention has focused on the role of seasonality in impacting transmission. Misconceptions have relied on seasonal mediation of respiratory diseases driven solely by environmental variables. However, seasonality is expected to be driven by host social behavior, particularly in highly susceptible populations. A key gap in understanding the role of social behavior in respiratory disease seasonality is our incomplete understanding of the seasonality of indoor human activity.

Methods: We leverage a novel data stream on human mobility to characterize activity in indoor versus outdoor environments in the United States. We use an observational mobile app-based location dataset encompassing over 5 million locations nationally. We classify locations as primarily indoor (e.g. stores, offices) or outdoor (e.g. playgrounds, farmers markets), disentangling location-specific visits into indoor and outdoor, to arrive at a fine-scale measure of indoor to outdoor human activity across time and space.

Results: We find the proportion of indoor to outdoor activity during a baseline year is seasonal, peaking in winter months. The measure displays a latitudinal gradient with stronger seasonality at northern latitudes and an additional summer peak in southern latitudes. We statistically fit this baseline indoor-outdoor activity measure to inform the incorporation of this complex empirical pattern into infectious disease dynamic models. However, we find that the disruption of the COVID-19 pandemic caused these patterns to shift significantly from baseline, and the empirical patterns are necessary to predict spatiotemporal heterogeneity in disease dynamics.

Conclusions: Our work empirically characterizes, for the first time, the seasonality of human social behavior at a large scale with high spatiotemporal resolution, and provides a parsimonious parameterization of seasonal behavior that can be included in infectious disease dynamics models. We provide critical evidence and methods necessary to inform the public health of seasonal and pandemic respiratory pathogens and improve our understanding of the relationship between the physical environment and infection risk in the context of global change.

Funding: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM123007.

Data availability

We make available on Github the data and code needed to reproduce all figures and analyses in this manuscript: https://github.com/bansallab/indoor_outdoor. The dataset we provide is of the metric used in all our analyses and figures ("indoor activity"). This dataset can be regenerated using the Safegraph Weekly Patterns datasets found at https://docs.safegraph.com/docs/weekly-patterns and code in the Github repository.The Safegraph Weekly Patterns was made freely available to academics at a uniquely granular level in response to the COVID-19 pandemic. Safegraph's business model involves selling these datasets to other corporations and, as a result, any data access agreement with the company forbids sharing of the raw data. The company does, however, make its data freely available to academics (for non-commercial use) through an institutional university subscription to Dewey or an individual data use agreement with Safegraph.

Article and author information

Author details

  1. Zachary Susswein

    Department of Biology, Georgetown University, Washingston, United States
    Competing interests
    Zachary Susswein, is currently employed at the Rockefeller Foundation as a Data Analyst. The author has no other competing interests to declare..
  2. Eva C Rest

    Department of Biology, Georgetown University, Washingston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6461-3450
  3. Shweta Bansal

    Department of Biology, Georgetown University, Washingston, United States
    For correspondence
    shweta.bansal@georgetown.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1740-5421

Funding

National Institutes of Health (R01GM123007)

  • Zachary Susswein
  • Eva C Rest
  • Shweta Bansal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethical review for this study was sought from the Institutional Review Board at Georgetown University and the study was approved on October 14, 2020 (STUDY00003041). This is secondary data analysis, so no informed consent or consent to publish was necessary.

Copyright

© 2023, Susswein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 792
    views
  • 110
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zachary Susswein
  2. Eva C Rest
  3. Shweta Bansal
(2023)
Disentangling the rhythms of human activity in the built environment for airborne transmission risk: an analysis of large-scale mobility data
eLife 12:e80466.
https://doi.org/10.7554/eLife.80466

Share this article

https://doi.org/10.7554/eLife.80466

Further reading

    1. Epidemiology and Global Health
    Jie Liang, Yang Pan ... Fanfan Zheng
    Research Article

    Background:

    The associations of age at diagnosis of breast cancer with incident myocardial infarction (MI) and heart failure (HF) remain unexamined. Addressing this problem could promote understanding of the cardiovascular impact of breast cancer.

    Methods:

    Data were obtained from the UK Biobank. Information on the diagnosis of breast cancer, MI, and HF was collected at baseline and follow-ups (median = 12.8 years). The propensity score matching method and Cox proportional hazards models were employed.

    Results:

    A total of 251,277 female participants (mean age: 56.8 ± 8.0 years), of whom 16,241 had breast cancer, were included. Among breast cancer participants, younger age at diagnosis (per 10-year decrease) was significantly associated with elevated risks of MI (hazard ratio [HR] = 1.36, 95% confidence interval [CI] 1.19–1.56, p<0.001) and HF (HR = 1.31, 95% CI 1.18–1.46, p<0.001). After propensity score matching, breast cancer patients with younger diagnosis age had significantly higher risks of MI and HF than controls without breast cancer.

    Conclusions:

    Younger age at diagnosis of breast cancer was associated with higher risks of incident MI and HF, underscoring the necessity to pay additional attention to the cardiovascular health of breast cancer patients diagnosed at younger age to conduct timely interventions to attenuate the subsequent risks of incident cardiovascular diseases.

    Funding:

    This study was supported by grants from the National Natural Science Foundation of China (82373665 and 81974490), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (2021-RC330-001), and the 2022 China Medical Board-open competition research grant (22-466).

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Wei Q Deng, Nathan Cawte ... Sonia S Anand
    Research Article

    Background:

    Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations.

    Methods:

    We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504).

    Results:

    Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (–0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (–0.043±0.013 kg, p=0.0011) in the combined cohorts.

    Conclusions:

    This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.

    Funding:

    This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.