A transcriptome atlas of leg muscles from healthy human volunteers reveals molecular and cellular signatures associated with muscle location

  1. Tooba Abbassi-Daloii
  2. Salma el Abdellaoui
  3. Lenard M Voortman
  4. Thom TJ Veeger
  5. Davy Cats
  6. Hailiang Mei
  7. Duncan E Meuffels
  8. Ewoud van Arkel
  9. Peter AC 't Hoen  Is a corresponding author
  10. Hermien E Kan  Is a corresponding author
  11. Vered Raz  Is a corresponding author
  1. Leiden University Medical Center, Netherlands
  2. Erasmus MC, Netherlands
  3. Medisch Centrum Haaglanden, Netherlands
  4. Radboud University Nijmegen Medical Centre, Netherlands

Abstract

Skeletal muscles support the stability and mobility of the skeleton but differ in biomechanical properties and physiological functions. The intrinsic factors that regulate muscle-specific characteristics are poorly understood. To study these, we constructed a large atlas of RNA-seq profiles from six leg muscles and two locations from one muscle, using biopsies from 20 healthy young males. We identified differential expression patterns and cellular composition across the seven tissues using three bioinformatics approaches confirmed by large-scale newly developed quantitative immune-histology procedures. With all three procedures, the muscle samples clustered into three groups congruent with their anatomical location. Concomitant with genes marking oxidative metabolism, genes marking fast- or slow-twitch myofibers differed between the three groups. The groups of muscles with higher expression of slow-twitch genes were enriched in endothelial cells and showed higher capillary content. In addition, expression profiles of Homeobox (HOX) transcription factors differed between the three groups and were confirmed by spatial RNA hybridization. We created an open-source graphical interface to explore and visualize the leg muscle atlas (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/). Our study reveals the molecular specialization of human leg muscles, and provides a novel resource to study muscle-specific molecular features, which could be linked with (patho)physiological processes.

Data availability

The raw data is publicly available at the European Genome Archive (Dataset ID: EGAS00001005904, https://ega-archive.org/). The muscle transcriptomics atlas is available for exploration through a graphical user interface (https://tabbassidaloii.shinyapps.io/muscleAtlasShinyApp/).

Article and author information

Author details

  1. Tooba Abbassi-Daloii

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Salma el Abdellaoui

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Lenard M Voortman

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9794-067X
  4. Thom TJ Veeger

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Davy Cats

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Hailiang Mei

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Duncan E Meuffels

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5372-6003
  8. Ewoud van Arkel

    Department of Orthopedics, Medisch Centrum Haaglanden, Den haag, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter AC 't Hoen

    Radboud University Nijmegen Medical Centre, Radboud, Netherlands
    For correspondence
    peter-bram.thoen@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
  10. Hermien E Kan

    Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    H.E.Kan@lumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5772-7177
  11. Vered Raz

    Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    v.raz@lumc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3152-1952

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (917.164.90)

  • Hermien E Kan

Association France Myopathies (22506)

  • Vered Raz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christopher L-H Huang, University of Cambridge, United Kingdom

Ethics

Human subjects: The study was approved by the local Medical Ethical Review Board of The Hague Zuid-West and the Erasmus Medical Centre and conducted in accordance with the ethical standards stated in the 1964 Declaration of Helsinki and its later amendments (ABR number: NL54081.098.16). All subjects provided written informed consent prior to participation.

Version history

  1. Received: May 23, 2022
  2. Preprint posted: June 1, 2022 (view preprint)
  3. Accepted: February 3, 2023
  4. Accepted Manuscript published: February 6, 2023 (version 1)
  5. Version of Record published: March 6, 2023 (version 2)
  6. Version of Record updated: March 13, 2023 (version 3)

Copyright

© 2023, Abbassi-Daloii et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,534
    views
  • 237
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tooba Abbassi-Daloii
  2. Salma el Abdellaoui
  3. Lenard M Voortman
  4. Thom TJ Veeger
  5. Davy Cats
  6. Hailiang Mei
  7. Duncan E Meuffels
  8. Ewoud van Arkel
  9. Peter AC 't Hoen
  10. Hermien E Kan
  11. Vered Raz
(2023)
A transcriptome atlas of leg muscles from healthy human volunteers reveals molecular and cellular signatures associated with muscle location
eLife 12:e80500.
https://doi.org/10.7554/eLife.80500

Share this article

https://doi.org/10.7554/eLife.80500

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.