Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER-plasma membrane contact sites in Arabidopsis thaliana

  1. Jennette M Codjoe
  2. Ryan A Richardson
  3. Fionn McLoughlin
  4. Richard David Vierstra
  5. Elizabeth S Haswell  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. SomaLogic, United States

Abstract

Mechanosensitive (MS) ion channels are an evolutionarily conserved way for cells to sense mechanical forces and transduce them into ionic signals. The channel properties of Arabidopsis thaliana MscS-Like (MSL)10 have been well studied, but how MSL10 signals remains largely unknown. To uncover signaling partners of MSL10, we employed both a proteomic screen and a forward genetic screen; both unexpectedly implicated ER-plasma membrane contact sites (EPCSs) in MSL10 function. The proteomic screen revealed that MSL10 associates with multiple proteins associated with EPCSs. Of these, only VAMP-associated proteins (VAP)27-1 and VAP27-3 interacted directly with MSL10. The forward genetic screen, for suppressors of a gain-of-function MSL10 allele (msl10-3G, MSL10S640L), identified mutations in the synaptotagmin (SYT)5 and SYT7 genes. We also found that EPCSs were expanded in leaves of msl10-3G plants compared to the wild type. Taken together, these results indicate that MSL10 associates with and functions with EPCS proteins, providing a new cell-level framework for understanding MSL10 signaling. In addition, placing a mechanosensory protein at EPCSs provides new insight into the function and regulation of this type of subcellular compartment.

Data availability

Mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD018747, and is included as a Source Data file for Figure 1.

The following data sets were generated

Article and author information

Author details

  1. Jennette M Codjoe

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ryan A Richardson

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fionn McLoughlin

    SomaLogic, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard David Vierstra

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0210-3516
  5. Elizabeth S Haswell

    Department of Biology, Washington University in St. Louis, Saint Louis, United States
    For correspondence
    ehaswell@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4246-065X

Funding

HHMI-Simons Faculty Scholar Grant (55108530)

  • Elizabeth S Haswell

National Science Foundation (MCB 1253103)

  • Elizabeth S Haswell

National Science Foundation (CMMI-1548571)

  • Elizabeth S Haswell

National Science Foundation (DGE-1745038)

  • Jennette M Codjoe

William H. Danforth Plant Sciences Fellowship

  • Jennette M Codjoe

National Institutes of Health (R01-GM124452)

  • Richard David Vierstra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yoselin Benitez-Alfonso, University of Leeds, United Kingdom

Version history

  1. Preprint posted: May 23, 2022 (view preprint)
  2. Received: May 23, 2022
  3. Accepted: October 6, 2022
  4. Accepted Manuscript published: October 7, 2022 (version 1)
  5. Version of Record published: November 1, 2022 (version 2)

Copyright

© 2022, Codjoe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,703
    views
  • 468
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennette M Codjoe
  2. Ryan A Richardson
  3. Fionn McLoughlin
  4. Richard David Vierstra
  5. Elizabeth S Haswell
(2022)
Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER-plasma membrane contact sites in Arabidopsis thaliana
eLife 11:e80501.
https://doi.org/10.7554/eLife.80501

Share this article

https://doi.org/10.7554/eLife.80501

Further reading

    1. Plant Biology
    Ivan Kulich, Julia Schmid ... Jiří Friml
    Research Article

    Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.

    1. Plant Biology
    Daniel S Yu, Megan A Outram ... Simon J Williams
    Research Article

    Plant pathogens secrete proteins, known as effectors, that function in the apoplast or inside plant cells to promote virulence. Effector recognition by cell-surface or cytosolic receptors results in the activation of defence pathways and plant immunity. Despite their importance, our general understanding of fungal effector function and recognition by immunity receptors remains poor. One complication often associated with effectors is their high sequence diversity and lack of identifiable sequence motifs precluding prediction of structure or function. In recent years, several studies have demonstrated that fungal effectors can be grouped into structural classes, despite significant sequence variation and existence across taxonomic groups. Using protein X-ray crystallography, we identify a new structural class of effectors hidden within the secreted in xylem (SIX) effectors from Fusarium oxysporum f. sp. lycopersici (Fol). The recognised effectors Avr1 (SIX4) and Avr3 (SIX1) represent the founding members of the Fol dual-domain (FOLD) effector class, with members containing two distinct domains. Using AlphaFold2, we predicted the full SIX effector repertoire of Fol and show that SIX6 and SIX13 are also FOLD effectors, which we validated experimentally for SIX6. Based on structural prediction and comparisons, we show that FOLD effectors are present within three divisions of fungi and are expanded in pathogens and symbionts. Further structural comparisons demonstrate that Fol secretes effectors that adopt a limited number of structural folds during infection of tomato. This analysis also revealed a structural relationship between transcriptionally co-regulated effector pairs. We make use of the Avr1 structure to understand its recognition by the I receptor, which leads to disease resistance in tomato. This study represents an important advance in our understanding of Fol-tomato, and by extension plant–fungal interactions, which will assist in the development of novel control and engineering strategies to combat plant pathogens.