Abstract

Lysosomes are essential for cellular recycling, nutrient signaling, autophagy, and pathogenic bacteria and viruses invasion. Lysosomal fusion is fundamental to cell survival and requires HOPS, a conserved heterohexameric tethering complex. On the membranes to be fused, HOPS binds small membrane-associated GTPases and assembles SNAREs for fusion, but how the complex fulfills its function remained speculative. Here, we used cryo-electron microscopy to reveal the structure of HOPS. Unlike previously reported, significant flexibility of HOPS is confined to its extremities, where GTPase binding occurs. The SNARE-binding module is firmly attached to the core, therefore, ideally positioned between the membranes to catalyze fusion. Our data suggest a model for how HOPS fulfills its dual functionality of tethering and fusion and indicate why it is an essential part of the membrane fusion machinery.

Data availability

All diffraction data are deposited in the PDB as indicated in the manuscript. PDB files are mentioned there.

The following data sets were generated

Article and author information

Author details

  1. Dmitry Shvarev

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9776-268X
  2. Jannis Schoppe

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline König

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Perz

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nadia Füllbrunn

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephan Kiontke

    Department of Plant Physiology and Photo Biology, Philipp University of Marburg, Marburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5822-913X
  7. Lars Langemeyer

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4309-0910
  8. Dovile Januliene

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3279-7590
  9. Kilian Schnelle

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8808-594X
  10. Daniel Kümmel

    Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3950-5914
  11. Florian Fröhlich

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8307-2189
  12. Arne Moeller

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    For correspondence
    arne.moeller@uni-osnabrueck.de
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Ungermann

    Department of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
    For correspondence
    cu@uos.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4331-8695

Funding

Deutsche Forschungsgemeinschaft (SFB 944,P11)

  • Christian Ungermann

Deutsche Forschungsgemeinschaft (SFB 944,P27)

  • Arne Moeller

Deutsche Forschungsgemeinschaft (SFB 944,P20)

  • Florian Fröhlich

Deutsche Forschungsgemeinschaft (UN111/5-6)

  • Arne Moeller
  • Christian Ungermann

Deutsche Forschungsgemeinschaft (INST190/196-1 FUGG)

  • Arne Moeller

Bundesministerium fur Bildung und Forschung (BMBF/DLR 01ED2010)

  • Arne Moeller

Deutsche Forschungsgemeinschaft (SFB 944,P16)

  • Daniel Kümmel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Shvarev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,434
    views
  • 1,316
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Shvarev
  2. Jannis Schoppe
  3. Caroline König
  4. Angela Perz
  5. Nadia Füllbrunn
  6. Stephan Kiontke
  7. Lars Langemeyer
  8. Dovile Januliene
  9. Kilian Schnelle
  10. Daniel Kümmel
  11. Florian Fröhlich
  12. Arne Moeller
  13. Christian Ungermann
(2022)
Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery
eLife 11:e80901.
https://doi.org/10.7554/eLife.80901

Share this article

https://doi.org/10.7554/eLife.80901

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.