Abstract

Genetic and environmental exposures cause variability in gene expression. Although most genes are affected in a population, their effect sizes vary greatly, indicating the existence of regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate the relationship between the sequence and transcription start site architectures of promoters and their expression variability across human individuals. We find that expression variability can be largely explained by a promoter's DNA sequence and its binding sites for specific transcription factors. We show that promoter expression variability reflects the biological process of a gene, demonstrating a selective trade-off between stability for metabolic genes and plasticity for responsive genes and those involved in signaling. Promoters with a rigid transcription start site architecture are more prone to have variable expression and to be associated with genetic variants with large effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression variability and limits genotypic effects. Our work provides insights into the variable nature of responsive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to essential genes through multiple transcription start site regions within a promoter.

Data availability

Sequencing data have been deposited into the GEO database: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188131

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hjorleifur Einarsson

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Marco Salvatore

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Christian Vaagenso

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Alcaraz

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Jette Bornholdt Lange

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah Rennie

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Robin Andersson

    Department of Biology, University of Copenhagen, Copenhagen N, Denmark
    For correspondence
    robin@binf.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-879X

Funding

Danmarks Frie Forskningsfond (6108-00038)

  • Robin Andersson

European Research Council (638173)

  • Robin Andersson

Novo Nordisk Fonden (NNF18OC0052570)

  • Robin Andersson

Novo Nordisk Fonden (NNF20OC0059796)

  • Robin Andersson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Eduardo Eyras, Australian National University, Australia

Version history

  1. Preprint posted: October 30, 2021 (view preprint)
  2. Received: June 10, 2022
  3. Accepted: November 14, 2022
  4. Accepted Manuscript published: November 15, 2022 (version 1)
  5. Version of Record published: January 17, 2023 (version 2)

Copyright

© 2022, Einarsson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,039
    views
  • 320
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hjorleifur Einarsson
  2. Marco Salvatore
  3. Christian Vaagenso
  4. Nicolas Alcaraz
  5. Jette Bornholdt Lange
  6. Sarah Rennie
  7. Robin Andersson
(2022)
Promoter sequence and architecture determine expression variability and confer robustness to genetic variants
eLife 11:e80943.
https://doi.org/10.7554/eLife.80943

Share this article

https://doi.org/10.7554/eLife.80943

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.