Abstract

Alternative splicing occurs in the vast majority of human genes, giving rise to distinct mRNA and protein isoforms. We, and others, have previously identified hundreds of genes that change their isoform expression upon T cell activation via alternative splicing; however, how these changes link activation input with functional output remains largely unknown. Here we investigate how costimulation of T cells through the CD28 receptor impacts alternative splicing in T cells activated through the T cell receptor (CD3) and find that while CD28 signaling alone has minimal impact on splicing, it enhances the extent of change for up to 20% of TCR-induced alternative splicing events. Interestingly, a set of CD28-enhanced splicing events occur within genes encoding key components of the apoptotic signaling pathway; namely caspase-9, Bax and Bim. Using both CRISPR-edited cells and antisense oligos to force expression of specific isoforms, we show for all three of these genes that the isoform induced by CD3/CD28 costimulation promotes resistance to apoptosis, and that changes in all three genes together function combinatorially to further promote cell viability. Finally, we show that the JNK signaling pathway, induced downstream of CD3/CD28 costimulation, is required for each of these splicing events, further highlighting their co-regulation. Together these findings demonstrate that alternative splicing is a key mechanism by which costimulation of CD28 promotes viability of activated T cells.

Data availability

The RNA-seq data generated for this study is available in GEO under accession codes GSE135118.

The following data sets were generated

Article and author information

Author details

  1. Davia Blake

    Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  2. Caleb M Radens

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Max B Ferretti

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Matthew R Gazzara

    Department of Genetics, University of Pennsylvania, Phildelphia, United States
    Competing interests
    No competing interests declared.
  5. Kristen W Lynch

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    For correspondence
    klync@pennmedicine.upenn.edu
    Competing interests
    Kristen W Lynch, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0120-8079

Funding

National Institute of General Medical Sciences (R35 GM118048)

  • Kristen W Lynch

National Institute of General Medical Sciences (F31 GM140978)

  • Davia Blake

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Version history

  1. Received: June 10, 2022
  2. Preprint posted: June 17, 2022 (view preprint)
  3. Accepted: October 19, 2022
  4. Accepted Manuscript published: October 20, 2022 (version 1)
  5. Version of Record published: November 1, 2022 (version 2)

Copyright

© 2022, Blake et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,220
    Page views
  • 172
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Davia Blake
  2. Caleb M Radens
  3. Max B Ferretti
  4. Matthew R Gazzara
  5. Kristen W Lynch
(2022)
Alternative splicing of apoptosis genes promotes human T cell survival
eLife 11:e80953.
https://doi.org/10.7554/eLife.80953

Share this article

https://doi.org/10.7554/eLife.80953

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.