GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis

  1. Ricardo A Cordova
  2. Jagannath Misra
  3. Parth H Amin
  4. Anglea J Klunk
  5. Nur P Damayanti
  6. Kenneth R Carlson
  7. Andrew J Elmendorf
  8. Hyeong-Geug Kim
  9. Emily T Mirek
  10. Bennet D Elzey
  11. Marcus J Miller
  12. X Charlie Dong
  13. Liang Cheng
  14. Tracy G Anthony
  15. Robero Pili  Is a corresponding author
  16. Ronald C Wek  Is a corresponding author
  17. Kirk A Staschke  Is a corresponding author
  1. Indiana University, United States
  2. Rutgers, The State University of New Jersey, United States
  3. Purdue University West Lafayette, United States
  4. Indiana University School of Medicine, United States
  5. University at Buffalo, State University of New York, United States

Abstract

A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.

Data availability

The authors declare that all data generated or analyzed in this study are included in the published article, its supplementary information and source files, or are publicly available. The CHARGE-seq and RNA-seq datasets generated in this study have been deposited in the NCBI Gene Expression Omnibus (GEO) database under the ascension codes GSE196251 and GSE196252, respectively. The custom python script used in the analysis of our Charge-seq study is available on GitHub (https://github.com/carlsonkPhD/tRNA_Charge-Seq/). Gene expression data from prostate cancer patients (PRAD) in the TCGA database used for correlation analysis is publicly available.

The following data sets were generated

Article and author information

Author details

  1. Ricardo A Cordova

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  2. Jagannath Misra

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  3. Parth H Amin

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  4. Anglea J Klunk

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  5. Nur P Damayanti

    Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  6. Kenneth R Carlson

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  7. Andrew J Elmendorf

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  8. Hyeong-Geug Kim

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  9. Emily T Mirek

    Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    No competing interests declared.
  10. Bennet D Elzey

    5Department of Comparative Pathology, Purdue University West Lafayette, West Lafayette, United States
    Competing interests
    No competing interests declared.
  11. Marcus J Miller

    Indiana University School of Medicine, Indianapolis, United States
    Competing interests
    No competing interests declared.
  12. X Charlie Dong

    1Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  13. Liang Cheng

    Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, United States
    Competing interests
    No competing interests declared.
  14. Tracy G Anthony

    Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    Tracy G Anthony, is a consultant for HiberCell, Inc..
  15. Robero Pili

    Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, United States
    For correspondence
    rpili@buffalo.edu
    Competing interests
    No competing interests declared.
  16. Ronald C Wek

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    For correspondence
    rwek@iu.edu
    Competing interests
    Ronald C Wek, is a member of the advisory board and holds equity in HiberCell, Inc..
  17. Kirk A Staschke

    Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, United States
    For correspondence
    kastasch@iu.edu
    Competing interests
    Kirk A Staschke, is a consultant for HiberCell, Inc. and receives research support from HiberCell, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8722-9585

Funding

NIH Office of the Director (GM136331)

  • Ronald C Wek

NIH Office of the Director (DK109714)

  • Tracy G Anthony

National Cancer Institute (R21CA221942)

  • Robero Pili

Indiana University Melvin and Bren Simon Comprehensive Cancer Center (P30CA082709)

  • Kirk A Staschke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nima Sharifi, Cleveland Clinic, United States

Ethics

Animal experimentation: All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) at Indiana University School of Medicine (Protocol #21014) and comply with all regulations for ethical conduct of animal research. Human prostate core needle biopsy specimens were obtained from the Indiana University Comprehensive Cancer Center Tissue Procurement and Distribution Core and approval was granted by the Institutional Review Board (IRB #1796) at the Office of Research Administration at Indiana University.

Version history

  1. Received: June 15, 2022
  2. Preprint posted: June 18, 2022 (view preprint)
  3. Accepted: September 14, 2022
  4. Accepted Manuscript published: September 15, 2022 (version 1)
  5. Version of Record published: October 18, 2022 (version 2)
  6. Version of Record updated: November 23, 2022 (version 3)

Copyright

© 2022, Cordova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,139
    views
  • 715
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ricardo A Cordova
  2. Jagannath Misra
  3. Parth H Amin
  4. Anglea J Klunk
  5. Nur P Damayanti
  6. Kenneth R Carlson
  7. Andrew J Elmendorf
  8. Hyeong-Geug Kim
  9. Emily T Mirek
  10. Bennet D Elzey
  11. Marcus J Miller
  12. X Charlie Dong
  13. Liang Cheng
  14. Tracy G Anthony
  15. Robero Pili
  16. Ronald C Wek
  17. Kirk A Staschke
(2022)
GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis
eLife 11:e81083.
https://doi.org/10.7554/eLife.81083

Share this article

https://doi.org/10.7554/eLife.81083

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.