Limited role of generation time changes in driving the evolution of the mutation spectrum in humans

  1. Ziyue Gao
  2. Yulin Zhang
  3. Nathan Cramer
  4. Molly Przeworski
  5. Priya Moorjani  Is a corresponding author
  1. University of Pennsylvania, United States
  2. University of California, Berkeley, United States
  3. Columbia University, United States

Abstract

Recent studies have suggested that the human germline mutation rate and spectrum evolve rapidly. Variation in generation time has been linked to these changes, though its contribution remains unclear. We develop a framework to characterize temporal changes in polymorphisms within and between populations, while controlling for the effects of natural selection and biased gene conversion. Application to the 1000 Genomes Project dataset reveals multiple independent changes that arose after the split of continental groups, including a previously reported, transient elevation in TCC>TTC mutations in Europeans and novel signals of divergence in C>G and T>A mutation rates among population samples. We also find a significant difference between groups sampled in and outside of Africa, in old T>C polymorphisms that predate the out-of-Africa migration. This surprising signal is driven by TpG>CpG mutations, and stems in part from mis-polarized CpG transitions, which are more likely to undergo recurrent mutations. Finally, by relating the mutation spectrum of polymorphisms to parental age effects on de novo mutations, we show that plausible changes in the generation time cannot explain the patterns observed for different mutation types jointly. Thus, other factors--genetic modifiers or environmental exposures--must have had a non-negligible impact on the human mutation landscape.

Data availability

All data generated or analyzed during this study were based on publicly available datasets like the 1000 Genomes Project. Source data for Figures 1-4 contain the numerical data used to generate the figures. Source data for figure 1 is available at the following URL: https://doi.org/10.6078/D19B0H. (Note, For private access prior to publication, the dataset is available at the URL: https://datadryad.org/stash/share/JK1BdqPhl6azkQru6gLTi6_dA-6lobKUxzpUM7mW69Y)

The following previously published data sets were used

Article and author information

Author details

  1. Ziyue Gao

    Department of Genetics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9244-0238
  2. Yulin Zhang

    Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Nathan Cramer

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Molly Przeworski

    Department of Systems Biology, Columbia University, New York, United States
    Competing interests
    Molly Przeworski, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5369-9009
  5. Priya Moorjani

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    moorjani@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0947-5673

Funding

National Institutes of Health (R35GM146810)

  • Ziyue Gao

Alfred P. Sloan Foundation

  • Ziyue Gao

National Institutes of Health (R35GM142978)

  • Priya Moorjani

Alfred P. Sloan Foundation

  • Priya Moorjani

National Institutes of Health (GM122975)

  • Molly Przeworski

National Science Foundation (DGE 2146752)

  • Nathan Cramer

Hellman Family Foundation

  • Priya Moorjani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philipp W Messer, Cornell University, United States

Version history

  1. Preprint posted: June 18, 2022 (view preprint)
  2. Received: June 18, 2022
  3. Accepted: February 2, 2023
  4. Accepted Manuscript published: February 13, 2023 (version 1)
  5. Accepted Manuscript updated: February 15, 2023 (version 2)
  6. Version of Record published: March 14, 2023 (version 3)

Copyright

© 2023, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,580
    Page views
  • 211
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziyue Gao
  2. Yulin Zhang
  3. Nathan Cramer
  4. Molly Przeworski
  5. Priya Moorjani
(2023)
Limited role of generation time changes in driving the evolution of the mutation spectrum in humans
eLife 12:e81188.
https://doi.org/10.7554/eLife.81188

Share this article

https://doi.org/10.7554/eLife.81188

Further reading

    1. Evolutionary Biology
    Zhiliang Zhang, Zhifei Zhang ... Guoxiang Li
    Research Article

    Biologically-controlled mineralization producing organic-inorganic composites (hard skeletons) by metazoan biomineralizers has been an evolutionary innovation since the earliest Cambrian. Among them, linguliform brachiopods are one of the key invertebrates that secrete calcium phosphate minerals to build their shells. One of the most distinct shell structures is the organo-phosphatic cylindrical column exclusive to phosphatic-shelled brachiopods, including both crown and stem groups. However, the complexity, diversity, and biomineralization processes of these microscopic columns are far from clear in brachiopod ancestors. Here, exquisitely well-preserved columnar shell ultrastructures are reported for the first time in the earliest eoobolids Latusobolus xiaoyangbaensis gen. et sp. nov. and Eoobolus acutulus sp. nov. from the Cambrian Series 2 Shuijingtuo Formation of South China. The hierarchical shell architectures, epithelial cell moulds, and the shape and size of cylindrical columns are scrutinised in these new species. Their calcium phosphate-based biomineralized shells are mainly composed of stacked sandwich columnar units. The secretion and construction of the stacked sandwich model of columnar architecture, which played a significant role in the evolution of linguliforms, is highly biologically controlled and organic-matrix mediated. Furthermore, a continuous transformation of anatomic features resulting from the growth of diverse columnar shells is revealed between Eoobolidae, Lingulellotretidae, and Acrotretida, shedding new light on the evolutionary growth and adaptive innovation of biomineralized columnar architecture among early phosphatic-shelled brachiopods during the Cambrian explosion.

    1. Developmental Biology
    2. Evolutionary Biology
    Eman Hijaze, Tsvia Gildor ... Smadar Ben-Tabou de-Leon
    Research Article

    Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates’ biomineralizing cells, yet, little is known on ROCK’s role in invertebrates’ biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.