A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans

  1. Ziqi Yu
  2. Xiaoyang Han
  3. Wenjing Xu
  4. Jie Zhang
  5. Carsten Marr
  6. Dinggang Shen
  7. Tingying Peng  Is a corresponding author
  8. Xiao-Yong Zhang  Is a corresponding author
  9. Jianfeng Feng
  1. Fudan University, China
  2. Helmholtz Zentrum München, Germany
  3. ShanghaiTech University, China

Abstract

Accurate brain tissue extraction on magnetic resonance imaging (MRI) data is crucial for analyzing brain structure and function. While several conventional tools have been optimized to handle human brain data, there have been no generalizable methods to extract brain tissues for multimodal MRI data from rodents, nonhuman primates, and humans. Therefore, developing a flexible and generalizable method for extracting whole brain tissue across species would allow researchers to analyze and compare experiment results more efficiently. Here, we propose a domain-adaptive and semi-supervised deep neural network, named the Brain Extraction Net (BEN), to extract brain tissues across species, MRI modalities, and MR scanners. We have evaluated BEN on 18 independent datasets, including 783 rodent MRI scans, 246 nonhuman primate MRI scans, and 4,601 human MRI scans, covering five species, four modalities, and six MR scanners with various magnetic field strengths. Compared to conventional toolboxes, the superiority of BEN is illustrated by its robustness, accuracy, and generalizability. Our proposed method not only provides a generalized solution for extracting brain tissue across species but also significantly improves the accuracy of atlas registration, thereby benefiting the downstream processing tasks. As a novel fully automated deep-learning method, BEN is designed as an open-source software to enable high-throughput processing of neuroimaging data across species in preclinical and clinical applications.

Data availability

All data (MRI data, source codes, pretrained weights and replicate demo notebooks for Figure 1-7) are included in the manuscript or available at https://github.com/yu02019/BEN.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ziqi Yu

    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8201-5481
  2. Xiaoyang Han

    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3007-6079
  3. Wenjing Xu

    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    No competing interests declared.
  4. Jie Zhang

    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    No competing interests declared.
  5. Carsten Marr

    Institute of AI for Health, Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2154-4552
  6. Dinggang Shen

    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
    Competing interests
    Dinggang Shen, is affiliated with Shanghai United Imaging Intelligence Co., Ltd. He has financial interests to declare..
  7. Tingying Peng

    Helmholtz AI, Helmholtz Zentrum München, Neuherberg, Germany
    For correspondence
    tingying.peng@helmholtz-muenchen.de
    Competing interests
    No competing interests declared.
  8. Xiao-Yong Zhang

    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    For correspondence
    xiaoyong_zhang@fudan.edu.cn
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8965-1077
  9. Jianfeng Feng

    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5987-2258

Funding

National Natural Science Foundation of China (81873893,82171903,92043301)

  • Xiao-Yong Zhang

Fudan University (the Office of Global Partnerships (Key Projects Development Fund))

  • Xiao-Yong Zhang

Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01)

  • Xiao-Yong Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Partial rodent MRI data collection were approved by the Animal Care and Use Committee of Fudan University, China. The rest rodent data (Rat-T2WI-9.4T and Rat-EPI-9.4T datasets) are publicly available (CARMI: https://openneuro.org/datasets/ds002870/versions/1.0.0). Marmoset MRI data collection were approved by the Animal Care and Use Committee of the Institute of Neuroscience, Chinese Academy of Sciences, China. Macaque MRI data are publicly available from the nonhuman PRIMatE Data Exchange (PRIME-DE) (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html).

Human subjects: The Zhangjiang International Brain Biobank (ZIB) protocols were approved by the Ethics Committee of Fudan University (AF/SC-03/20200722) and written informed consents were obtained from all volunteers. UK Biobank (UKB) and Adolescent Brain Cognitive Development (ABCD) are publicly available.

Copyright

© 2022, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,586
    views
  • 215
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziqi Yu
  2. Xiaoyang Han
  3. Wenjing Xu
  4. Jie Zhang
  5. Carsten Marr
  6. Dinggang Shen
  7. Tingying Peng
  8. Xiao-Yong Zhang
  9. Jianfeng Feng
(2022)
A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans
eLife 11:e81217.
https://doi.org/10.7554/eLife.81217

Share this article

https://doi.org/10.7554/eLife.81217

Further reading

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Ruihan Dong, Rongrong Liu ... Cheng Zhu
    Research Article

    Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden ‘grammars’ of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.