Thalamocortical contribution to cognitive task activity

  1. Kai Hwang  Is a corresponding author
  2. James M Shine
  3. Michael W Cole
  4. Evan Sorenson
  1. University of Iowa, United States
  2. University of Sydney, Australia
  3. Rutgers, The State University of New Jersey, United States

Abstract

Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are associated with multi-domain behavioral impairments in language, memory, and executive functions. Here we show how task-evoked thalamic activity are organized to support these broad cognitive abilities. We analyzed functional MRI data from human subjects that performed 127 tasks encompassing a broad range of cognitive representations. We first investigated the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that are suggestive of broad functional participation. These thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outperformed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation result was further supported by profiles of neuropsychological impairments in human patients with focal thalamic lesions. In summary, our results suggest a general organizational principle of how the human thalamocortical system supports cognitive task activity.

Data availability

Raw data are available at OpenNeuro.org (https://openneuro.org/datasets/ds002105/ and https://openneuro.org/datasets/ds002306/). Code and data are available at (https://github.com/HwangLabNeuroCogDynamics/ThalamicTaskHubs)

The following previously published data sets were used

Article and author information

Author details

  1. Kai Hwang

    Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
    For correspondence
    kai-hwang@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1064-7815
  2. James M Shine

    Brain and Mind Center, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1762-5499
  3. Michael W Cole

    Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4329-438X
  4. Evan Sorenson

    Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01MH122613)

  • Kai Hwang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave written informed consent, and the study was approved by the University of Iowa Institutional Review Board (IRB protocol #200105018).

Copyright

© 2022, Hwang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,990
    views
  • 262
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai Hwang
  2. James M Shine
  3. Michael W Cole
  4. Evan Sorenson
(2022)
Thalamocortical contribution to cognitive task activity
eLife 11:e81282.
https://doi.org/10.7554/eLife.81282

Share this article

https://doi.org/10.7554/eLife.81282

Further reading

    1. Neuroscience
    David Richter, Dirk van Moorselaar, Jan Theeuwes
    Research Article

    Avoiding distraction by salient yet irrelevant stimuli is critical when accomplishing daily tasks. One possible mechanism to accomplish this is by suppressing stimuli that may be distracting such that they no longer compete for attention. While the behavioral benefits of distractor suppression are well established, its neural underpinnings are not yet fully understood. In a functional MRI (fMRI) study, we examined whether and how sensory responses in early visual areas show signs of distractor suppression after incidental learning of spatial statistical regularities. Participants were exposed to an additional singleton task where, unbeknownst to them, one location more frequently contained a salient distractor. We analyzed whether visual responses in terms of fMRI BOLD were modulated by this distractor predictability. Our findings indicate that implicit spatial priors shape sensory processing even at the earliest stages of cortical visual processing, evident in early visual cortex as a suppression of stimuli at locations which frequently contained distracting information. Notably, while this suppression was spatially (receptive field) specific, it did extend to nearby neutral locations and occurred regardless of whether distractors, nontarget items, or targets were presented at this location, suggesting that suppression arises before stimulus identification. Crucially, we observed similar spatially specific neural suppression even if search was only anticipated, but no search display was presented. Our results highlight proactive modulations in early visual cortex, where potential distractions are suppressed preemptively, before stimulus onset, based on learned expectations. Combined, our study underscores how the brain leverages implicitly learned prior knowledge to optimize sensory processing and attention allocation.

    1. Neuroscience
    Baher A Ibrahim, Yoshitaka Shinagawa ... Daniel A Llano
    Research Article

    To navigate real-world listening conditions, the auditory system relies on the integration of multiple sources of information. However, to avoid inappropriate cross-talk between inputs, highly connected neural systems need to strike a balance between integration and segregation. Here, we develop a novel approach to examine how repeated neurochemical modules in the mouse inferior colliculus lateral cortex (LC) allow controlled integration of its multimodal inputs. The LC had been impossible to study via imaging because it is buried in a sulcus. Therefore, we coupled two-photon microscopy with the use of a microprism to reveal the first-ever sagittal views of the LC to examine neuronal responses with respect to its neurochemical motifs under anesthetized and awake conditions. This approach revealed marked differences in the acoustic response properties of LC and neighboring non-lemniscal portions of the inferior colliculus. In addition, we observed that the module and matrix cellular motifs of the LC displayed distinct somatosensory and auditory responses. Specifically, neurons in modules demonstrated primarily offset responses to acoustic stimuli with enhancement in responses to bimodal stimuli, whereas matrix neurons showed onset response to acoustic stimuli and suppressed responses to bimodal stimulation. Thus, this new approach revealed that the repeated structural motifs of the LC permit functional integration of multimodal inputs while retaining distinct response properties.