Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification

  1. Rebeca San Martin
  2. Priyojit Das
  3. Jacob T Sanders
  4. Ashtyn M Hill
  5. Rachel Patton McCord  Is a corresponding author
  1. University of Tennessee at Knoxville, United States

Abstract

The expression of a mutant Lamin A, progerin, in Hutchinson-Gilford Progeria Syndrome leads to alterations in genome architecture, nuclear morphology, epigenetic states, and altered phenotypes in all cells of the mesenchymal lineage. Here, we report a comprehensive analysis of the transcriptional status of patient derived HGPS fibroblasts, including nine cell lines not previously reported, in comparison with age-matched controls, adults, and old adults. We find that Progeria fibroblasts carry abnormal transcriptional signatures, centering around several functional hubs: DNA maintenance and epigenetics, bone development and homeostasis, blood vessel maturation and development, fat deposition and lipid management, and processes related to muscle growth. Stratification of patients by age revealed misregulated expression of genes related to endochondral ossification and chondrogenic commitment in children aged four to seven years old, where this differentiation program starts in earnest. Hi-C measurements on patient fibroblasts show weakening of genome compartmentalization strength but increases in TAD strength. While the majority of gene misregulation occurs in regions which do not change spatial chromosome organization, some expression changes in key mesenchymal lineage genes coincide with lamin associated domain misregulation and shifts in genome compartmentalization.

Data availability

All RNA-seq and Hi-C data contributed by this study is available on GEO at GSE206707 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206707).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rebeca San Martin

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7249-3922
  2. Priyojit Das

    Graduate School of Genome Science and Technology, University of Tennessee at Knoxville, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6774-6718
  3. Jacob T Sanders

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ashtyn M Hill

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rachel Patton McCord

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, United States
    For correspondence
    rmccord@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0010-5323

Funding

National Institute of General Medical Sciences (R35GM133557)

  • Rachel Patton McCord

American Cancer Society (134060-PF-19-183-01-CSM)

  • Rebeca San Martin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, San Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,000
    views
  • 237
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebeca San Martin
  2. Priyojit Das
  3. Jacob T Sanders
  4. Ashtyn M Hill
  5. Rachel Patton McCord
(2022)
Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification
eLife 11:e81290.
https://doi.org/10.7554/eLife.81290

Share this article

https://doi.org/10.7554/eLife.81290

Further reading

    1. Chromosomes and Gene Expression
    Jake VanBelzen, Bennet Sakelaris ... Jason H Brickner
    Research Article

    Chromatin immunoprecipitation (ChIP-seq) is the most common approach to observe global binding of proteins to DNA in vivo. The occupancy of transcription factors (TFs) from ChIP-seq agrees well with an alternative method, chromatin endogenous cleavage (ChEC-seq2). However, ChIP-seq and ChEC-seq2 reveal strikingly different patterns of enrichment of yeast RNA polymerase II (RNAPII). We hypothesized that this reflects distinct populations of RNAPII, some of which are captured by ChIP-seq and some of which are captured by ChEC-seq2. RNAPII association with enhancers and promoters - predicted from biochemical studies - is detected well by ChEC-seq2 but not by ChIP-seq. Enhancer/promoter-bound RNAPII correlates with transcription levels and matches predicted occupancy based on published rates of enhancer recruitment, preinitiation assembly, initiation, elongation, and termination. The occupancy from ChEC-seq2 allowed us to develop a stochastic model for global kinetics of RNAPII transcription which captured both the ChEC-seq2 data and changes upon chemical-genetic perturbations to transcription. Finally, RNAPII ChEC-seq2 and kinetic modeling suggests that a mutation in the Gcn4 transcription factor that blocks interaction with the NPC destabilizes promoter-associated RNAPII without altering its recruitment to the enhancer.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.