Landmark-based spatial navigation across the human lifespan

  1. Marcia Bécu  Is a corresponding author
  2. Denis Sheynikhovich
  3. Stephen Ramanoël
  4. Guillaume Tatur
  5. Anthony Ozier-Lafontaine
  6. Colas N Authié
  7. José-Alain Sahel
  8. Angelo Arleo  Is a corresponding author
  1. Norwegian University of Science and Technology, Norway
  2. Sorbonne Université, France
  3. Streetlab, Institut de la Vision, France
  4. University of Pittsburgh, United States

Abstract

Human spatial cognition has been mainly characterized in terms of egocentric (body-centered) and allocentric (world-centered) wayfinding behavior. It was hypothesized that allocentric spatial coding, as a special high-level cognitive ability, develops later and deteriorates earlier than the egocentric one throughout lifetime. We challenged this hypothesis by testing the use of landmarks versus geometric cues in a cohort of 96 deeply-phenotyped participants, who physically navigated an equiangular Y maze, surrounded by landmarks or an anisotropic one. The results show that an apparent allocentric deficit in children and aged navigators is caused specifically by difficulties in using landmarks for navigation while introducing a geometric polarization of space made these participants as efficient allocentric navigators as young adults. This finding suggests that allocentric behavior relies on two dissociable sensory processing systems that are differentially affected by human aging. Whereas landmark processing follows an inverted-U dependence on age, spatial geometry processing is conserved, highlighting its potential in improving navigation performance across the life span.

Data availability

All data and code used in the analyses are available as an Open Science Framework deposit, accessible at https://osf.io/zhrk4.

The following data sets were generated

Article and author information

Author details

  1. Marcia Bécu

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    marcia.becu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-1023
  2. Denis Sheynikhovich

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7737-8907
  3. Stephen Ramanoël

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4735-1097
  4. Guillaume Tatur

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony Ozier-Lafontaine

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Colas N Authié

    Institut de la Vision, Streetlab, Institut de la Vision, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. José-Alain Sahel

    Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Angelo Arleo

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    For correspondence
    angelo.arleo@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

ANR (ANR-14-CHIN-0001 ANR-14-CHIN-0002)

  • Angelo Arleo

ANR (Labex LifeSenses ANR-10-LABX-65)

  • José-Alain Sahel
  • Angelo Arleo

ANR (IHU FOReSIGHT grant ANR-18-IAHU-01)

  • José-Alain Sahel
  • Angelo Arleo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants were voluntary and they (or their parents in the case of children) gave an informed consent for inclusion in the study. All screening and experimental procedures were in accordance with the tenets of the Declaration of Helsinki, and they were approved by the Ethical Committee CPP Ile de France V (ID_RCB 2015-A01094-45, No. CPP: 16122 MSB).

Copyright

© 2023, Bécu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,345
    views
  • 298
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcia Bécu
  2. Denis Sheynikhovich
  3. Stephen Ramanoël
  4. Guillaume Tatur
  5. Anthony Ozier-Lafontaine
  6. Colas N Authié
  7. José-Alain Sahel
  8. Angelo Arleo
(2023)
Landmark-based spatial navigation across the human lifespan
eLife 12:e81318.
https://doi.org/10.7554/eLife.81318

Share this article

https://doi.org/10.7554/eLife.81318

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.