Landmark-based spatial navigation across the human lifespan

  1. Marcia Bécu  Is a corresponding author
  2. Denis Sheynikhovich
  3. Stephen Ramanoël
  4. Guillaume Tatur
  5. Anthony Ozier-Lafontaine
  6. Colas N Authié
  7. José-Alain Sahel
  8. Angelo Arleo  Is a corresponding author
  1. Norwegian University of Science and Technology, Norway
  2. Sorbonne Université, France
  3. Streetlab, Institut de la Vision, France
  4. University of Pittsburgh, United States

Abstract

Human spatial cognition has been mainly characterized in terms of egocentric (body-centered) and allocentric (world-centered) wayfinding behavior. It was hypothesized that allocentric spatial coding, as a special high-level cognitive ability, develops later and deteriorates earlier than the egocentric one throughout lifetime. We challenged this hypothesis by testing the use of landmarks versus geometric cues in a cohort of 96 deeply-phenotyped participants, who physically navigated an equiangular Y maze, surrounded by landmarks or an anisotropic one. The results show that an apparent allocentric deficit in children and aged navigators is caused specifically by difficulties in using landmarks for navigation while introducing a geometric polarization of space made these participants as efficient allocentric navigators as young adults. This finding suggests that allocentric behavior relies on two dissociable sensory processing systems that are differentially affected by human aging. Whereas landmark processing follows an inverted-U dependence on age, spatial geometry processing is conserved, highlighting its potential in improving navigation performance across the life span.

Data availability

All data and code used in the analyses are available as an Open Science Framework deposit, accessible at https://osf.io/zhrk4.

The following data sets were generated

Article and author information

Author details

  1. Marcia Bécu

    Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
    For correspondence
    marcia.becu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4564-1023
  2. Denis Sheynikhovich

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7737-8907
  3. Stephen Ramanoël

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4735-1097
  4. Guillaume Tatur

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony Ozier-Lafontaine

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Colas N Authié

    Institut de la Vision, Streetlab, Institut de la Vision, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. José-Alain Sahel

    Department of Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Angelo Arleo

    INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
    For correspondence
    angelo.arleo@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

ANR (ANR-14-CHIN-0001 ANR-14-CHIN-0002)

  • Angelo Arleo

ANR (Labex LifeSenses ANR-10-LABX-65)

  • José-Alain Sahel
  • Angelo Arleo

ANR (IHU FOReSIGHT grant ANR-18-IAHU-01)

  • José-Alain Sahel
  • Angelo Arleo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arne Ekstrom, University of Arizona

Ethics

Human subjects: All participants were voluntary and they (or their parents in the case of children) gave an informed consent for inclusion in the study. All screening and experimental procedures were in accordance with the tenets of the Declaration of Helsinki, and they were approved by the Ethical Committee CPP Ile de France V (ID_RCB 2015-A01094-45, No. CPP: 16122 MSB).

Version history

  1. Preprint posted: February 13, 2020 (view preprint)
  2. Received: June 22, 2022
  3. Accepted: March 11, 2023
  4. Accepted Manuscript published: March 13, 2023 (version 1)
  5. Version of Record published: March 23, 2023 (version 2)
  6. Version of Record updated: May 11, 2023 (version 3)

Copyright

© 2023, Bécu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,884
    views
  • 247
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marcia Bécu
  2. Denis Sheynikhovich
  3. Stephen Ramanoël
  4. Guillaume Tatur
  5. Anthony Ozier-Lafontaine
  6. Colas N Authié
  7. José-Alain Sahel
  8. Angelo Arleo
(2023)
Landmark-based spatial navigation across the human lifespan
eLife 12:e81318.
https://doi.org/10.7554/eLife.81318

Share this article

https://doi.org/10.7554/eLife.81318

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Donghui Yan, Bowen Hu ... Qiongshi Lu
    Research Article

    Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer’s disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.