A crosstalk between hepcidin and IRE/IRP pathways controls ferroportin expression and determines serum iron levels in mice

  1. Edouard Charlebois
  2. Carine Fillebeen
  3. Angeliki Katsarou
  4. Aleksandr Rabinovich
  5. Kazimierz Wisniewski
  6. Vivek Venkataramani
  7. Bernhard Michalke
  8. Anastasia Velentza
  9. Kostas Pantopoulos  Is a corresponding author
  1. McGill University, Canada
  2. Ferring Research Institute Inc, United States
  3. University Hospital Frankfurt, Germany
  4. Helmholtz Zentrum München, Germany

Abstract

The iron hormone hepcidin is transcriptionally activated by iron or inflammation via distinct, partially overlapping pathways. We addressed how iron affects inflammatory hepcidin levels and the ensuing hypoferremic response. Dietary iron overload did not mitigate hepcidin induction in LPS-treated wt mice but prevented effective inflammatory hypoferremia. Likewise, LPS modestly decreased serum iron in hepcidin-deficient Hjv-/- mice, model of hemochromatosis. Synthetic hepcidin triggered hypoferremia in control but not iron-loaded wt animals. Furthermore, it dramatically decreased hepatic and splenic ferroportin in Hjv-/- mice on standard or iron-deficient diet, but only triggered hypoferremia in the latter. Mechanistically, iron antagonized hepcidin responsiveness by inactivating IRPs in the liver and spleen, to stimulate ferroportin mRNA translation. Prolonged LPS treatment eliminating ferroportin mRNA permitted hepcidin-mediated hypoferremia in iron-loaded mice. Thus, de novo ferroportin synthesis is critical determinant of serum iron and finetunes hepcidin-dependent functional outcomes. Our data uncover a crosstalk between hepcidin and IRE/IRP systems that controls tissue ferroportin expression and determines serum iron levels. Moreover, they suggest that hepcidin supplementation therapy is more efficient combined with iron depletion.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Edouard Charlebois

    Department of Medicine, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Carine Fillebeen

    Department of Medicine, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Angeliki Katsarou

    Department of Medicine, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Aleksandr Rabinovich

    Ferring Research Institute Inc, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kazimierz Wisniewski

    Ferring Research Institute Inc, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vivek Venkataramani

    Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernhard Michalke

    Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Anastasia Velentza

    Ferring Research Institute Inc, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kostas Pantopoulos

    Department of Medicine, McGill University, Montreal, Canada
    For correspondence
    kostas.pantopoulos@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2305-0057

Funding

Canadian Institutes of Health Research (PJT-159730)

  • Kostas Pantopoulos

Fonds de Recherche du Québec - Santé

  • Edouard Charlebois

Deutsche Forschungsgemeinschaft (SPP 2306)

  • Vivek Venkataramani
  • Bernhard Michalke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by the Animal Care Committee of McGill University (protocol 4966).

Copyright

© 2022, Charlebois et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,163
    views
  • 304
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edouard Charlebois
  2. Carine Fillebeen
  3. Angeliki Katsarou
  4. Aleksandr Rabinovich
  5. Kazimierz Wisniewski
  6. Vivek Venkataramani
  7. Bernhard Michalke
  8. Anastasia Velentza
  9. Kostas Pantopoulos
(2022)
A crosstalk between hepcidin and IRE/IRP pathways controls ferroportin expression and determines serum iron levels in mice
eLife 11:e81332.
https://doi.org/10.7554/eLife.81332

Share this article

https://doi.org/10.7554/eLife.81332

Further reading

    1. Cell Biology
    Weihua Wang, Junqiao Xing ... Zhangfeng Hu
    Research Article

    Existence of cilia in the last eukaryotic common ancestor raises a fundamental question in biology: how the transcriptional regulation of ciliogenesis has evolved? One conceptual answer to this question is by an ancient transcription factor regulating ciliary gene expression in both uni- and multicellular organisms, but examples of such transcription factors in eukaryotes are lacking. Previously, we showed that an ancient transcription factor X chromosome-associated protein 5 (Xap5) is required for flagellar assembly in Chlamydomonas. Here, we show that Xap5 and Xap5-like (Xap5l) are two conserved pairs of antagonistic transcription regulators that control ciliary transcriptional programs during spermatogenesis. Male mice lacking either Xap5 or Xap5l display infertility, as a result of meiotic prophase arrest and sperm flagella malformation, respectively. Mechanistically, Xap5 positively regulates the ciliary gene expression by activating the key regulators including Foxj1 and Rfx families during the early stage of spermatogenesis. In contrast, Xap5l negatively regulates the expression of ciliary genes via repressing these ciliary transcription factors during the spermiogenesis stage. Our results provide new insights into the mechanisms by which temporal and spatial transcription regulators are coordinated to control ciliary transcriptional programs during spermatogenesis.

    1. Cell Biology
    Hyunggu Hahn, Carole Daly ... Alex RB Thomsen
    Research Article

    Chemokine receptors are GPCRs that regulate the chemotactic migration of a wide variety of cells including immune and cancer cells. Most chemokine receptors contain features associated with the ability to stimulate G protein signaling during β-arrestin-mediated receptor internalization into endosomes. As endosomal signaling of certain non-GPCR receptors plays a major role in cell migration, we chose to investigate the potential role of endosomal chemokine receptor signaling on mechanisms governing this function. Applying a combination of pharmacological and cell biological approaches, we demonstrate that the model chemokine receptor CCR7 recruits G protein and β-arrestin simultaneously upon chemokine stimulation, which enables internalized receptors to activate G protein from endosomes. Furthermore, spatiotemporal-resolved APEX2 proteome profiling shows that endosomal CCR7 uniquely enriches specific Rho GTPase regulators as compared to plasma membrane CCR7, which is directly associated with enhanced activity of the Rho GTPase Rac1 and chemotaxis of immune T cells. As Rac1 drives the formation of membrane protrusions during chemotaxis, our findings suggest an important integrated function of endosomal chemokine receptor signaling in cell migration.