Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2

Abstract

In organ regeneration, progenitor and stem cells reside in their native microenvironment, which provides dynamic physical and chemical cues essential to their survival, proliferation, and differentiation. However, the types of cells that form the native microenvironment for renal progenitor cells (RPCs) have not been clarified. Here, single-cell sequencing of zebrafish kidney reveals fabp10a as a principal marker of renal interstitial cells (RICs), which can be specifically labeled by GFP under the control of fabp10a promoter in the fabp10a:GFP transgenic zebrafish. During nephron regeneration, the formation of nephrons is supported by RICs that form a network to wrap the RPC aggregates. RICs that are in close contact with RPC aggregates express Cyclooxygenase 2 (Cox2) and secrete prostaglandin E2 (PGE2). Inhibiting PGE2 production prevents nephrogenesis by reducing the proliferation of RPCs. PGE2 cooperates with Wnt4a to promote nephron maturation by regulating β-catenin stability of RPC aggregates. Overall, these findings indicate that RICs provide a necessary microenvironment for rapid nephrogenesis during nephron regeneration.

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files. Sequencing data have been deposited in GEO under accession codes GSE183382 and GSE191068.

The following data sets were generated

Article and author information

Author details

  1. Xiaoliang Liu

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4239-9879
  2. Ting Yu

    Department of Respiratory Medicine, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoqin Tan

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Daqing Jin

    Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Wenmin Yang

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiangping Zhang

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lu Dai

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhongwei He

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Dongliang Li

    Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yunfeng Zhang

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Shuyi Liao

    Department of Nephrology, Army Medical University, Chongqing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3137-4403
  12. Jinghong Zhao

    Department of Nephrology, Army Medical University, Chongqing, China
    For correspondence
    zhaojh@tmmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9750-3285
  13. Tao P Zhong

    Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
    For correspondence
    tzhong@bio.ecnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  14. Chi Liu

    Department of Nephrology, Army Medical University, Chongqing, China
    For correspondence
    chiliu@tmmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2057-9649

Funding

National Key Research and Development Program of China (2017YFA0106600)

  • Chi Liu

National Natural Science Foundation of China (32070822)

  • Chi Liu

National Natural Science Foundation of China (82030023)

  • Jinghong Zhao

National Natural Science Foundation of China (31771609)

  • Chi Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: In this study, all animal care and use protocol was approved by the Institutional Animal Careand Use Committee of the Army Medical University, China (SYXK-PLA-2007035).

Copyright

© 2023, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,330
    views
  • 251
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoliang Liu
  2. Ting Yu
  3. Xiaoqin Tan
  4. Daqing Jin
  5. Wenmin Yang
  6. Jiangping Zhang
  7. Lu Dai
  8. Zhongwei He
  9. Dongliang Li
  10. Yunfeng Zhang
  11. Shuyi Liao
  12. Jinghong Zhao
  13. Tao P Zhong
  14. Chi Liu
(2023)
Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2
eLife 12:e81438.
https://doi.org/10.7554/eLife.81438

Share this article

https://doi.org/10.7554/eLife.81438

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.