Regeneration: Renal interstitial cells to the rescue

The ability of the adult zebrafish to replace damaged nephrons in the kidney depends on renal progenitor cells and renal interstitial cells working closely together.
  1. Hannah M Wesselman
  2. Rebecca A Wingert  Is a corresponding author
  1. Department of Biological Sciences, University of Notre Dame, United States

The fact some animals can regenerate complex parts of their body after injury has captured our imaginations for hundreds of years. For example, multiple fish species – including the goldfish, trout and zebrafish – are able to regenerate their kidneys throughout their lifetime (Reimschuessel, 2001), and the spiny mouse also exhibits striking renal regenerative abilities (Okamura et al., 2021). Humans, on the other hand, lack this power and stop producing nephrons – the functional units of the kidney – about 36 weeks after conception, and can only partially repair damaged nephrons (Romagnani et al., 2013).

In the zebrafish kidney, cells called renal progenitor cells multiply after organ damage and differentiate to make entirely new nephrons (Zhou et al., 2010; Diep et al., 2011; McCampbell et al., 2015). The local environment around progenitor cells helps guide their growth and activity. However, the identity of these nearby cells and how they control regeneration remains unknown. Now, in eLife, Chi Liu, Tao Zhong and Jinghong Zhao and colleagues — including Xiaoliang Liu and Ting Yu as joint first authors – report that these progenitor cells receive their marching orders from other cells that are similar to the renal interstitial cells found in the kidneys of mammals (Liu et al., 2023).

Renal interstitial cells secrete essential factors during development, and also during disease, in mammals (Whiting et al., 1999). However, until this latest work, it was not clear if these cells were also found in zebrafish. To investigate, Liu et al. – who are based at the Army Medical University and East China Normal University – used single-cell sequencing to see if any cells in the zebrafish kidney activate a gene called fabp10a, which is highly expressed in renal interstitial cells. This led them to find cells similar to renal interstitial cells nestled amongst nephrons in a tight-knit network in adult zebrafish, and also around clusters of renal progenitor cells after acute injury (caused by exposure to an antibiotic called gentamicin that can lead to toxic reactions in the kidney).

Further analysis revealed that during regeneration, renal interstitial cells significantly upregulate the gene for an enzyme called Cox2a, which is involved in the synthesis of lipid molecules called prostaglandins. Cells often use prostaglandins to communicate with neighboring cells (Figure 1). Liu et al. found that levels of a prostaglandin called PGE2 increased substantially in the regenerating nephron tissue, and that progenitor cells near to the renal interstitial cells expressed a prostaglandin receptor called Ep4b. Genetically or chemically blocking any aspect of this prostaglandin pathway – that is, the production of prostaglandins by Cox2a, the signaling by PGE2 molecules, or the detection of PGE2 via the Ep4b receptor – caused the renal progenitor cells to proliferate less, thus reducing the ability of the nephrons to regenerate.

Renal regeneration in the adult zebrafish kidney.

(A) Following injury, renal progenitor cells (RPCs; blue) in the kidneys of adult zebrafish proliferate and cluster near existing nephrons. This proliferation is promoted by nearby renal interstitial cells (RICs; green) secreting lipid prostaglandin E2 molecules (PGE2; grey polygons), which stabilize a component of the Wnt pathway within the progenitor cells. (B) Once these critical signaling events have occurred, the progenitor cells gradually differentiate into other cell types, which go on to form distinct segments of the new nephron (shown as different colors) that replaces the damaged part of the kidney in just a few days.

Image credit: Hannah Wesselman (CC BY 4.0).

PGE2 regulates kidney development in the embryo, as well as the formation of blood stem cells, the liver and other tissues (Poureetezadi et al., 2016; Marra et al., 2019; Jin and Zhong, 2022). To develop these non-kidney tissues, PGE2 works with a well-known signaling network called the Wnt pathway. When the Wnt pathway is inactive, a signaling protein called ß-catenin is routinely produced, but broken down by cellular machinery. When Wnt is active, ß-catenin is not degraded and instead moves to the nucleus and regulates gene expression. Liu et al. found that Wnt signaling was switched on during nephron regeneration, and was diminished when PGE2 signaling was inhibited. Further experiments revealed that addition of PGE2 could rescue ß-catenin stability but not its expression. This suggests that renal interstitial cells in the zebrafish kidney use PGE2 to drive the rapid proliferation of renal progenitor cells by stabilizing the effector of the Wnt pathway.

The findings of Liu et al. reveal how renal interstitial cells are critical for growing new nephrons in the zebrafish kidney, providing valuable insights in to the largely elusive mechanics of renal regeneration. However, questions remain: for example, what triggers cells to synthesize PGE2? Evidence suggests that the gene for Cox2a is not always expressed, implying that dying nephrons somehow trigger its upregulation. Additionally, how does the kidney know when it has reached homeostasis and produced enough new nephrons? While cell proliferation is required for regeneration, too much proliferation is unhealthy – and can even lead to cancer. In other words, now that we understand the components of the regenerative program, how this mechanism is turned off and on again still requires further exploration. Answering these questions will shed new light on the role of the nephron neighborhood during regeneration and, in the future, could help researchers develop better regenerative therapies.

References

Article and author information

Author details

  1. Hannah M Wesselman

    Hannah M Wesselman is in the Department of Biological Sciences, University of Notre Dame, Notre Dame, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2832-3701
  2. Rebecca A Wingert

    Rebecca A Wingert is in the Department of Biological Sciences, University of Notre Dame, Notre Dame, United States

    For correspondence
    rwingert@nd.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3133-7549

Publication history

  1. Version of Record published:

Copyright

© 2023, Wesselman and Wingert

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 648
    views
  • 50
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hannah M Wesselman
  2. Rebecca A Wingert
(2023)
Regeneration: Renal interstitial cells to the rescue
eLife 12:e86268.
https://doi.org/10.7554/eLife.86268

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.