Osteocytes regulate senescence of bone and bone marrow
Abstract
The skeletal system contains a series of sophisticated cellular lineages arisen from the mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), that determine the homeostasis of bone and bone marrow. Here we reasoned that osteocyte may exert a function in regulation of these lineage cell specifications and tissue homeostasis. Using a mouse model of conditional deletion of osteocytes by the expression of diphtheria toxin subunit 𝛼 (DTA) in dentin matrix protein 1 (DMP1) positive osteocytes, we demonstrated that partial ablation of DMP1 positive osteocytes caused severe sarcopenia, osteoporosis and degenerative kyphosis, leading to shorter lifespan in these animals. Osteocytes reduction altered mesenchymal lineage commitment resulting in impairment of osteogenesis and induction of osteoclastogensis. Single cell RNA sequencing further revealed that hematopoietic lineage was mobilized towards myeloid lineage differentiation with expanded myeloid progenitors, neutrophils and monocytes, while the lymphopoiesis was impaired with reduced B cells in the osteocyte ablation mice. The acquisition of a senescence-associated secretory phenotype (SASP) in both osteoprogenic and myeloid lineage cells was the underlying cause. Together, we showed that osteocytes play critical roles in regulation of lineage cell specifications in bone and bone marrow through mediation of senescence.
Data availability
ScRNA-Seq and RNA-seq data have been deposited into GEO repository with accession codes GSE202516 and GSE202356 respectively. Source data have been deposited in Dryad.
-
Osteocytes regulate skeletal senescence during developmentNCBI Gene Expression Omnibus, GSE202516.
-
Osteocytes regulate skeletal senescence during developmentNCBI Gene Expression Omnibus, GSE202356.
-
Osteocytes regulate senescence of bone and bone marrowDryad Digital Repository, doi:10.5061/dryad.5tb2rbp6k.
Article and author information
Author details
Funding
National Natural Science Foundation of China (82002339)
- Junjie Gao
National Natural Science Foundation of China (81820108020)
- Changqing Zhang
Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System (BJ1-9000-22-4002)
- Changqing Zhang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All mice experiments were approved by the Animal Care and Use Committee of Shanghai Sixth People's Hospital (Permit number: 2021-0935, 2021-0936). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.
Copyright
© 2022, Ding et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,104
- views
-
- 687
- downloads
-
- 50
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.
-
- Cell Biology
The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.