Osteocytes regulate senescence of bone and bone marrow

  1. Peng Ding
  2. Chuan Gao
  3. Youshui Gao
  4. Delin Liu
  5. Hao Li
  6. Jun Xu
  7. Xiaoyi Chen
  8. Yigang Huang
  9. Changqing Zhang  Is a corresponding author
  10. Ming Hao Zheng  Is a corresponding author
  11. Junjie Gao  Is a corresponding author
  1. Shanghai Sixth People's Hospital, China
  2. University of Western Australia, Australia
  3. University of Chinese Academy of Sciences, China

Abstract

The skeletal system contains a series of sophisticated cellular lineages arisen from the mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), that determine the homeostasis of bone and bone marrow. Here we reasoned that osteocyte may exert a function in regulation of these lineage cell specifications and tissue homeostasis. Using a mouse model of conditional deletion of osteocytes by the expression of diphtheria toxin subunit 𝛼 (DTA) in dentin matrix protein 1 (DMP1) positive osteocytes, we demonstrated that partial ablation of DMP1 positive osteocytes caused severe sarcopenia, osteoporosis and degenerative kyphosis, leading to shorter lifespan in these animals. Osteocytes reduction altered mesenchymal lineage commitment resulting in impairment of osteogenesis and induction of osteoclastogensis. Single cell RNA sequencing further revealed that hematopoietic lineage was mobilized towards myeloid lineage differentiation with expanded myeloid progenitors, neutrophils and monocytes, while the lymphopoiesis was impaired with reduced B cells in the osteocyte ablation mice. The acquisition of a senescence-associated secretory phenotype (SASP) in both osteoprogenic and myeloid lineage cells was the underlying cause. Together, we showed that osteocytes play critical roles in regulation of lineage cell specifications in bone and bone marrow through mediation of senescence.

Data availability

ScRNA-Seq and RNA-seq data have been deposited into GEO repository with accession codes GSE202516 and GSE202356 respectively. Source data have been deposited in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Peng Ding

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9348-8134
  2. Chuan Gao

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Youshui Gao

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Delin Liu

    Centre for Orthopaedic Translational Research, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Hao Li

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Xu

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaoyi Chen

    Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yigang Huang

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Changqing Zhang

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    For correspondence
    zhangcq@sjtu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  10. Ming Hao Zheng

    Centre for Orthopaedic Translational Research, University of Western Australia, Nedlands, Australia
    For correspondence
    minghao.zheng@uwa.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  11. Junjie Gao

    Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai, China
    For correspondence
    colingjj@163.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4820-8524

Funding

National Natural Science Foundation of China (82002339)

  • Junjie Gao

National Natural Science Foundation of China (81820108020)

  • Changqing Zhang

Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System (BJ1-9000-22-4002)

  • Changqing Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice experiments were approved by the Animal Care and Use Committee of Shanghai Sixth People's Hospital (Permit number: 2021-0935, 2021-0936). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2022, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,868
    views
  • 653
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peng Ding
  2. Chuan Gao
  3. Youshui Gao
  4. Delin Liu
  5. Hao Li
  6. Jun Xu
  7. Xiaoyi Chen
  8. Yigang Huang
  9. Changqing Zhang
  10. Ming Hao Zheng
  11. Junjie Gao
(2022)
Osteocytes regulate senescence of bone and bone marrow
eLife 11:e81480.
https://doi.org/10.7554/eLife.81480

Share this article

https://doi.org/10.7554/eLife.81480

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.