Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10

Abstract

The interplay among different cells in a tissue is essential for maintaining homeostasis. Although, disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided

The following data sets were generated

Article and author information

Author details

  1. Ana J Caetano

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Yushi Redhead

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Farah Karim

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Pawan Dhami

    NIHR BRC Genomics Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Shichina Kannambath

    NIHR BRC Genomics Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Rosamond Nuamah

    NIHR BRC Genomics Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Ana A Volponi

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5661-0807
  8. Luigi Nibali

    Department of Periodontology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Veronica Booth

    Department of Periodontology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. Eleanor M D'Agostino

    Unilever, Sharnbrook, United Kingdom
    Competing interests
    Eleanor M D'Agostino, is an employee of Unilever Plc.. The authors state no conflict of interest.
  11. Paul T Sharpe

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    For correspondence
    paul.sharpe@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2116-9561

Funding

BBSRC (BB/P504506/1)

  • Ana J Caetano

NIHR Biomedical Research Centre Guy's and St Thomas' NHS Foundation Trust and King's College London

  • Paul T Sharpe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bian Zhuan, Wuhan University, China

Version history

  1. Received: June 30, 2022
  2. Preprint posted: July 5, 2022 (view preprint)
  3. Accepted: January 16, 2023
  4. Accepted Manuscript published: January 17, 2023 (version 1)
  5. Version of Record published: February 3, 2023 (version 2)

Copyright

© 2023, Caetano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,314
    Page views
  • 230
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana J Caetano
  2. Yushi Redhead
  3. Farah Karim
  4. Pawan Dhami
  5. Shichina Kannambath
  6. Rosamond Nuamah
  7. Ana A Volponi
  8. Luigi Nibali
  9. Veronica Booth
  10. Eleanor M D'Agostino
  11. Paul T Sharpe
(2023)
Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10
eLife 12:e81525.
https://doi.org/10.7554/eLife.81525

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Artur Ruppel, Dennis Wörthmüller ... Martial Balland
    Research Article Updated

    Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell–cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell–cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern (‘cell doublet’). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell–matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Valentin Chabert, Geun-Don Kim ... Andreas Mayer
    Research Article

    Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.