Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10

Abstract

The interplay among different cells in a tissue is essential for maintaining homeostasis. Although, disease states have been traditionally attributed to individual cell types, increasing evidence and new therapeutic options have demonstrated the primary role of multicellular functions to understand health and disease, opening new avenues to understand pathogenesis and develop new treatment strategies. We recently described the cellular composition and dynamics of the human oral mucosa; however, the spatial arrangement of cells is needed to better understand a morphologically complex tissue. Here, we link single-cell RNA sequencing, spatial transcriptomics, and high-resolution multiplex fluorescence in situ hybridisation to characterise human oral mucosa in health and oral chronic inflammatory disease. We deconvolved expression for resolution enhancement of spatial transcriptomic data and defined highly specialised epithelial and stromal compartments describing location-specific immune programs. Furthermore, we spatially mapped a rare pathogenic fibroblast population localised in a highly immunogenic region, responsible for lymphocyte recruitment through CXCL8 and CXCL10 and with a possible role in pathological angiogenesis through ALOX5AP. Collectively, our study provides a comprehensive reference for the study of oral chronic disease pathogenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided

The following data sets were generated

Article and author information

Author details

  1. Ana J Caetano

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Yushi Redhead

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Farah Karim

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Pawan Dhami

    NIHR BRC Genomics Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Shichina Kannambath

    NIHR BRC Genomics Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Rosamond Nuamah

    NIHR BRC Genomics Centre, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Ana A Volponi

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5661-0807
  8. Luigi Nibali

    Department of Periodontology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Veronica Booth

    Department of Periodontology, King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  10. Eleanor M D'Agostino

    Unilever, Sharnbrook, United Kingdom
    Competing interests
    Eleanor M D'Agostino, is an employee of Unilever Plc.. The authors state no conflict of interest.
  11. Paul T Sharpe

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    For correspondence
    paul.sharpe@kcl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2116-9561

Funding

BBSRC (BB/P504506/1)

  • Ana J Caetano

NIHR Biomedical Research Centre Guy's and St Thomas' NHS Foundation Trust and King's College London

  • Paul T Sharpe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Caetano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,398
    views
  • 392
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana J Caetano
  2. Yushi Redhead
  3. Farah Karim
  4. Pawan Dhami
  5. Shichina Kannambath
  6. Rosamond Nuamah
  7. Ana A Volponi
  8. Luigi Nibali
  9. Veronica Booth
  10. Eleanor M D'Agostino
  11. Paul T Sharpe
(2023)
Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10
eLife 12:e81525.
https://doi.org/10.7554/eLife.81525

Share this article

https://doi.org/10.7554/eLife.81525

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.