Human and macaque pairs employ different coordination strategies in a transparent decision game

  1. Sebastian Moeller
  2. Anton M Unakafov
  3. Julia Fischer
  4. Alexander Gail
  5. Stefan Treue
  6. Igor Kagan  Is a corresponding author
  1. German Primate Center, Germany
  2. University of Göttingen, Germany

Abstract

Many real-world decisions in social contexts are made while observing a partner's actions. To study dynamic interactions during such decisions, we developed a setup where two agents seated face-to-face engage in game-theoretical tasks on a shared transparent touchscreen display ('transparent games'). We compared human and macaque pairs in a transparent version of the coordination game 'Bach-or-Stravinsky', which entails a conflict about which of two individually-preferred opposing options to choose to achieve coordination. Most human pairs developed coordinated behavior and adopted dynamic turn-taking to equalize the payoffs. All macaque pairs converged on simpler, static coordination. Remarkably, two animals learned to coordinate dynamically after training with a human confederate. This pair selected the faster agent's preferred option, exhibiting turn-taking behavior that was captured by modeling the visibility of the partner's action before one's own movement. Such competitive turn-taking was unlike the prosocial turn-taking in humans, who equally often initiated switches to and from their preferred option. Thus, the dynamic coordination is not restricted to humans, but can occur on the background of different social attitudes and cognitive capacities in rhesus monkeys. Overall, our results illustrate how action visibility promotes emergence and maintenance of coordination when agents can observe and time their mutual actions.

Data availability

The datasets used in the current study and the links to the public GitHub code repositories are uploaded to a public Open Science Framework data repository (https://osf.io/f5u8z/).

The following data sets were generated

Article and author information

Author details

  1. Sebastian Moeller

    Cognitive Neurosciences Laboratory, German Primate Center, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0381-6449
  2. Anton M Unakafov

    Cognitive Neurosciences Laboratory, German Primate Center, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia Fischer

    Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5807-0074
  4. Alexander Gail

    Sensorimotor Group, German Primate Center, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1165-4646
  5. Stefan Treue

    Georg-Elias-Müller-Institute of Psychology, University of Göttingen, Goettingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Igor Kagan

    Cognitive Neurosciences Laboratory, German Primate Center, Goettingen, Germany
    For correspondence
    ikagan@dpz.eu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1814-4200

Funding

Niedersächsisches Ministerium für Wissenschaft und Kultur (Niedersächsisches Vorab)

  • Julia Fischer
  • Alexander Gail
  • Stefan Treue
  • Igor Kagan

Leibniz ScienceCampus Primate Cognition

  • Julia Fischer
  • Alexander Gail
  • Stefan Treue
  • Igor Kagan

Leibniz Collaborative Excellence grant Neurophysiological mechanisms of primate interactions in dynamic sensorimotor settings"" (K265/2019)

  • Alexander Gail
  • Stefan Treue
  • Igor Kagan

SFB 1528 Cognition of Interaction (project Z01)

  • Alexander Gail
  • Igor Kagan

Max Planck Institute for Dynamics and Self-Organization (open access funding)

  • Anton M Unakafov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Erin L Rich, Icahn School of Medicine at Mount Sinai, United States

Ethics

Animal experimentation: Research with nonhuman primates represents a small but indispensable component of neuroscience research. The scientists in this study are committed to the responsibility they have in ensuring the best possible science with the least possible harm to the animals (Roelfsema and Treue, 2014). The experimental procedures were approved by the responsible regional government office (Niedersaechsisches Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit (LAVES), permits 3392-42502-04-13/1100 and 3319-42502-04-18/2823), and were conducted in accordance with the European Directive 2010/63/EU, the corresponding German law governing animal welfare, and German Primate Center institutional guidelines.

Human subjects: Experiments were performed in accordance with institutional guidelines for experiments with humans and adhered to the principles of the Declaration of Helsinki. The experimental protocol was approved by the ethics committee of the Georg-Elias-Mueller-Institute for Psychology, University of Goettingen (GEMI 17-06-06 171).

Version history

  1. Preprint posted: March 14, 2020 (view preprint)
  2. Received: July 5, 2022
  3. Accepted: December 28, 2022
  4. Accepted Manuscript published: January 12, 2023 (version 1)
  5. Version of Record published: February 17, 2023 (version 2)

Copyright

© 2023, Moeller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,283
    views
  • 183
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Moeller
  2. Anton M Unakafov
  3. Julia Fischer
  4. Alexander Gail
  5. Stefan Treue
  6. Igor Kagan
(2023)
Human and macaque pairs employ different coordination strategies in a transparent decision game
eLife 12:e81641.
https://doi.org/10.7554/eLife.81641

Share this article

https://doi.org/10.7554/eLife.81641

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.