Human and macaque pairs employ different coordination strategies in a transparent decision game
Abstract
Many real-world decisions in social contexts are made while observing a partner's actions. To study dynamic interactions during such decisions, we developed a setup where two agents seated face-to-face engage in game-theoretical tasks on a shared transparent touchscreen display ('transparent games'). We compared human and macaque pairs in a transparent version of the coordination game 'Bach-or-Stravinsky', which entails a conflict about which of two individually-preferred opposing options to choose to achieve coordination. Most human pairs developed coordinated behavior and adopted dynamic turn-taking to equalize the payoffs. All macaque pairs converged on simpler, static coordination. Remarkably, two animals learned to coordinate dynamically after training with a human confederate. This pair selected the faster agent's preferred option, exhibiting turn-taking behavior that was captured by modeling the visibility of the partner's action before one's own movement. Such competitive turn-taking was unlike the prosocial turn-taking in humans, who equally often initiated switches to and from their preferred option. Thus, the dynamic coordination is not restricted to humans, but can occur on the background of different social attitudes and cognitive capacities in rhesus monkeys. Overall, our results illustrate how action visibility promotes emergence and maintenance of coordination when agents can observe and time their mutual actions.
Data availability
The datasets used in the current study and the links to the public GitHub code repositories are uploaded to a public Open Science Framework data repository (https://osf.io/f5u8z/).
Article and author information
Author details
Funding
Niedersächsisches Ministerium für Wissenschaft und Kultur (Niedersächsisches Vorab)
- Julia Fischer
- Alexander Gail
- Stefan Treue
- Igor Kagan
Leibniz ScienceCampus Primate Cognition
- Julia Fischer
- Alexander Gail
- Stefan Treue
- Igor Kagan
Leibniz Collaborative Excellence grant Neurophysiological mechanisms of primate interactions in dynamic sensorimotor settings"" (K265/2019)
- Alexander Gail
- Stefan Treue
- Igor Kagan
SFB 1528 Cognition of Interaction (project Z01)
- Alexander Gail
- Igor Kagan
Max Planck Institute for Dynamics and Self-Organization (open access funding)
- Anton M Unakafov
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Research with nonhuman primates represents a small but indispensable component of neuroscience research. The scientists in this study are committed to the responsibility they have in ensuring the best possible science with the least possible harm to the animals (Roelfsema and Treue, 2014). The experimental procedures were approved by the responsible regional government office (Niedersaechsisches Landesamt fuer Verbraucherschutz und Lebensmittelsicherheit (LAVES), permits 3392-42502-04-13/1100 and 3319-42502-04-18/2823), and were conducted in accordance with the European Directive 2010/63/EU, the corresponding German law governing animal welfare, and German Primate Center institutional guidelines.
Human subjects: Experiments were performed in accordance with institutional guidelines for experiments with humans and adhered to the principles of the Declaration of Helsinki. The experimental protocol was approved by the ethics committee of the Georg-Elias-Mueller-Institute for Psychology, University of Goettingen (GEMI 17-06-06 171).
Copyright
© 2023, Moeller et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,472
- views
-
- 199
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic–pituitary–gonadal axis in mammals to trigger the juvenile–adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
-
- Neuroscience
Theoretical computational models are widely used to describe latent cognitive processes. However, these models do not equally explain data across participants, with some individuals showing a bigger predictive gap than others. In the current study, we examined the use of theory-independent models, specifically recurrent neural networks (RNNs), to classify the source of a predictive gap in the observed data of a single individual. This approach aims to identify whether the low predictability of behavioral data is mainly due to noisy decision-making or misspecification of the theoretical model. First, we used computer simulation in the context of reinforcement learning to demonstrate that RNNs can be used to identify model misspecification in simulated agents with varying degrees of behavioral noise. Specifically, both prediction performance and the number of RNN training epochs (i.e., the point of early stopping) can be used to estimate the amount of stochasticity in the data. Second, we applied our approach to an empirical dataset where the actions of low IQ participants, compared with high IQ participants, showed lower predictability by a well-known theoretical model (i.e., Daw’s hybrid model for the two-step task). Both the predictive gap and the point of early stopping of the RNN suggested that model misspecification is similar across individuals. This led us to a provisional conclusion that low IQ subjects are mostly noisier compared to their high IQ peers, rather than being more misspecified by the theoretical model. We discuss the implications and limitations of this approach, considering the growing literature in both theoretical and data-driven computational modeling in decision-making science.