Fermentation: Teaming up to make kombucha

Reducing the microbial diversity in a type of fermented tea reveals the core metabolic interactions responsible for the drink’s signature taste and characteristics.
  1. Olga Ponomarova  Is a corresponding author
  1. Department of Systems Biology at the University of Massachusetts Chan Medical School, United States

From cheese to salami, to beer or miso soup, chances are that your favorite delicacy owes its unique flavors to humble communities of microorganisms which ferment sugars into substances that preserve and improve food (Bourdichon et al., 2021). Humans have been enthusiastically brewing or pickling since the Bronze Age, yet surprisingly little is known about the intricacies of the fermentation process (Farag et al., 2019; Yang et al., 2014).

Fermenting food requires dozens if not hundreds of microbial species which work closely together, each producing substances which the others take up, use and transform into new chemicals important for other species in the community (Tamang et al., 2016). These complex interactions make it challenging to disentangle how individual actors contribute to the overall process, and to identify the ones essential for the final product. Now, in eLife, Xiaoning Huang, Yongping Xin and Ting Lu report having methodically reduced the complex microbial system which creates the tangy drink known as kombucha tea, down to a single pair of species (Huang et al., 2022).

Kombucha is created by a thriving community of yeast and bacteria which work together to ferment sugary tea. Huang et al. first focused on the features that this culture must have to produce the famous concoction. Three key characteristics emerged: both yeast and bacteria should be present; a characteristic jelly-like film or ‘pellicle’ should form at the surface; and the culture should consume sucrose while accumulating acetate, ethanol, and small amounts of sucrose constituents such as glucose. Preserving these features ensured that a core community of microbes would capture the essential metabolism of the native culture found in kombucha (Figure 1; Step 1).

Approach used by Huang et al. to investigate the role of specific members of the microbial community found in kombucha tea.

The species richness of the kombucha microbial community was systematically reduced (top), with each step (gray arrows) improving the understanding of the metabolic function of core species in the culture (bottom). Step 1: Analyzing the native kombucha community revealed the identity and relative abundance of its various microbial members; gross metabolic changes were also recorded (such as consumption of sucrose and production of ethanol and acetate), but they were unassigned to any microorganisms. Step 2: Isolating five yeast and five bacterial species and analyzing their twenty-five pairwise combination cultures revealed that the bacteria depended on yeast degrading sucrose. Step 3: In-depth analysis of a representative yeast-bacteria pair revealed the specific interactions underlying their collaboration (cross-feeding of glucose and ethanol from yeast to bacteria, and bacterial production of biofilm which potentially protects the community).

Next, the team (who are based at the University of Illinois Urbana-Champaign and the China Agricultural University) isolated five yeast and five bacterial species, examining each of them individually or as yeast-bacteria pairs. Some bacteria completely depended on yeast to break down sucrose into glucose and into other essential molecules required for their survival (Figure 1; Step 2). Although all yeast species could survive on their own, the distinctive properties of kombucha (such as its pellicle, high acidity and acetate production) occurred only in co-cultures, indicating that bacteria did contribute to these community functions.

To understand how the community worked at an even finer scale, Huang et al. focused on a single yeast-bacteria pair which could create all three features characteristic of native kombucha. This co-culture was remarkably stable: no matter the ratio of yeast to bacteria at the start of the process, the final communities had roughly equal numbers of each species once stable. They also all produced concoctions which closely resembled traditional kombucha, with similar levels of acidity, sugars, ethanol, and acetate.

Next, these two species were individually cultured on diverse nutrient sources to closely monitor which compounds they could consume and produce (Figure 1; Step 3). The manipulation revealed that only the yeast could make glucose and ethanol; this likely involves the cells secreting an enzyme that processes sucrose into glucose, which is then available for ‘public use’ (Tran et al., 2020; Smith and Schuster, 2019). In turn, the bacteria could only create a pellicle when they consumed glucose and ethanol at the same time. This experiment helped to finally piece together how the two species interact: yeast feed and stimulate bacteria with glucose and ethanol, while bacteria wrap the community in a film that may shield it from the environment (Yin et al., 2019).

If two species alone can thrive and produce kombucha-like tea, then why does this process normally involve many more microorganisms? This taxonomic diversity may improve adaptability (Willi et al., 2006), or it may just emerge through random processes (Sloan et al., 2006); it could even be an artefact due to sampling at an inadequately large scale (Fierer and Lennon, 2011). Further studies are needed to investigate these possibilities.

The reductionist approach developed by Huang et al. allows scientists to pinpoint the core subgroups of microbes which perform the primary functions of a wider community, and to disentangle the role of individual species. This framework is useful to understand the metabolic processes responsible for the signature look, taste and smell of fermented foods. The next steps would potentially involve finetuning the method to study microbial communities which are harder to define, such as those that interact with host organisms or the wider environment.

References

Article and author information

Author details

  1. Olga Ponomarova

    Olga Ponomarova is in the Department of Systems Biology at the University of Massachusetts Chan Medical School, Worcester, United States

    For correspondence
    Olga.Ponomarova@umassmed.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6331-9949

Publication history

  1. Version of Record published: August 11, 2022 (version 1)

Copyright

© 2022, Ponomarova

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,135
    Page views
  • 105
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Ponomarova
(2022)
Fermentation: Teaming up to make kombucha
eLife 11:e81670.
https://doi.org/10.7554/eLife.81670

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Serkan Sayin, Brittany Rosener ... Amir Mitchell
    Research Advance

    Drug metabolism by the microbiome can influence anti-cancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.

    1. Computational and Systems Biology
    2. Neuroscience
    Andrew McKinney, Ming Hu ... Xiaolong Jiang
    Research Article

    The locus coeruleus (LC) houses the vast majority of noradrenergic neurons in the brain and regulates many fundamental functions including fight and flight response, attention control, and sleep/wake cycles. While efferent projections of the LC have been extensively investigated, little is known about its local circuit organization. Here, we performed large-scale multi-patch recordings of noradrenergic neurons in adult mouse LC to profile their morpho-electric properties while simultaneously examining their interactions. LC noradrenergic neurons are diverse and could be classified into two major morpho-electric types. While fast excitatory synaptic transmission among LC noradrenergic neurons was not observed in our preparation, these mature LC neurons connected via gap junction at a rate similar to their early developmental stage and comparable to other brain regions. Most electrical connections form between dendrites and are restricted to narrowly spaced pairs or small clusters of neurons of the same type. In addition, more than two electrically coupled cell pairs were often identified across a cohort of neurons from individual multi-cell recording sets that followed a chain-like organizational pattern. The assembly of LC noradrenergic neurons thus follows a spatial and cell type-specific wiring principle that may be imposed by a unique chain-like rule.