Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors

  1. Joseph M Replogle
  2. Jessica L Bonnar
  3. Angela N Pogson
  4. Christina R Liem
  5. Nolan K Maier
  6. Yufang Ding
  7. Baylee J Russell
  8. Xingren Wang
  9. Kun Leng
  10. Alina Guna
  11. Thomas M Norman
  12. Ryan A Pak
  13. Daniel M Ramos
  14. Michael Emmerson Ward
  15. Luke A Gilbert
  16. Martin Kampmann
  17. Jonathan S Weissman  Is a corresponding author
  18. Marco Jost  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Whitehead Institute for Biomedical Research, United States
  3. Harvard Medical School, United States
  4. National Institutes of Health, United States
  5. National Institute of Neurological Disorders and Stroke, United States

Abstract

CRISPR interference (CRISPRi) enables programmable, reversible, and titratable repression of gene expression (knockdown) in mammalian cells. Initial CRISPRi-mediated genetic screens have showcased the potential to address basic questions in cell biology, genetics, and biotechnology, but wider deployment of CRISPRi screening has been constrained by the large size of single guide RNA (sgRNA) libraries and challenges in generating cell models with consistent CRISPRi-mediated knockdown. Here, we present next-generation CRISPRi sgRNA libraries and effector expression constructs that enable strong and consistent knockdown across mammalian cell models. First, we combine empirical sgRNA selection with a dual-sgRNA library design to generate an ultra-compact (1-3 elements per gene), highly active CRISPRi sgRNA library. Next, we compare CRISPRi effectors to show that the recently published Zim3-dCas9 provides an excellent balance between strong on-target knockdown and minimal nonspecific effects on cell growth or the transcriptome. Finally, we engineer a suite of cell lines with stable expression of Zim3-dCas9 and robust on-target knockdown. Our results and publicly available reagents establish best practices for CRISPRi genetic screening.

Data availability

Sequencing data are available on NCBI GEO under accession number GSE205310 (Perturb-seq) and GSE205147 (bulk RNA-seq). sgRNA counts from CRISPRi screens are included as supplemental tables. All data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Joseph M Replogle

    Medical Scientist Training Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    Joseph M Replogle, consults for Maze Therapeutics and Waypoint Bio.
  2. Jessica L Bonnar

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Angela N Pogson

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Christina R Liem

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  5. Nolan K Maier

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6103-6726
  6. Yufang Ding

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  7. Baylee J Russell

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Xingren Wang

    Department of Microbiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  9. Kun Leng

    Medical Scientist Training Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. Alina Guna

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Thomas M Norman

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Thomas M Norman, consults for Maze Therapeutics. The Regents of the University of California with TMN, MJ, LAG, and JSW as inventors have filed patent applications related to CRISPRi/a screening and Perturb-seq..
  12. Ryan A Pak

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  13. Daniel M Ramos

    Center for Alzheimer's Disease and Related Dementias, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  14. Michael Emmerson Ward

    National Institute of Neurological Disorders and Stroke, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5296-8051
  15. Luke A Gilbert

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Luke A Gilbert, declares outside interest in Chroma Medicine. The Regents of the University of California with TMN, MJ, LAG, and JSW as inventors have filed patent applications related to CRISPRi/a screening and Perturb-seq. LAG, MK, and JSW are inventors on US Patent 11,254,933 related to CRISPRi/a screening..
  16. Martin Kampmann

    Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, United States
    Competing interests
    Martin Kampmann, serves on the Scientific Advisory Boards of Engine Biosciences, Casma Therapeutics, Cajal Neuroscience, and Alector, and is an advisor to Modulo Bio and Recursion Therapeutics. LAG, MK, and JSW are inventors on US Patent 11,254,933 related to CRISPRi/a screening..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3819-7019
  17. Jonathan S Weissman

    Whitehead Institute for Biomedical Research, Cambridge, United States
    For correspondence
    weissman@wi.mit.edu
    Competing interests
    Jonathan S Weissman, declares outside interest in 5 AM Venture, Amgen, Chroma Medicine, KSQ Therapeutics, Maze Therapeutics, Tenaya Therapeutics, Tessera Therapeutics, and Third Rock Ventures. The Regents of the University of California with TMN, MJ, LAG, and JSW as inventors have filed patent applications related to CRISPRi/a screening and Perturb-seq. LAG, MK, and JSW are inventors on US Patent 11,254,933 related to CRISPRi/a screening..
  18. Marco Jost

    Department of Microbiology, Harvard Medical School, Boston, United States
    For correspondence
    marco_jost@hms.harvard.edu
    Competing interests
    Marco Jost, consults for Maze Therapeutics and Gate Bioscience. The Regents of the University of California with TMN, MJ, LAG, and JSW as inventors have filed patent applications related to CRISPRi/a screening and Perturb-seq..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1369-4908

Funding

National Institutes of Health (R00GM130964)

  • Marco Jost

National Institutes of Health (T32AI132120)

  • Baylee J Russell

Human Frontier Science Program (2019L/LT000858)

  • Alina Guna

Chan Zuckerberg Initiative (Ben Barres Early Career Acceleration Award)

  • Martin Kampmann

Howard Hughes Medical Institute (Investigator)

  • Jonathan S Weissman

National Institutes of Health (RM1HG009490-01)

  • Jonathan S Weissman

Springer Nature Global Grant for Gut Health (1772808)

  • Marco Jost

Charles H. Hood Foundation (Child Health Research Award)

  • Marco Jost

Defense Advanced Research Projects Agency (HR0011-19-2-0007)

  • Jonathan S Weissman

Ludwig Center for Molecular Oncology (NA)

  • Jonathan S Weissman

Chan Zuckerberg Initiative (NA)

  • Jonathan S Weissman

National Institutes of Health (F31NS115380)

  • Joseph M Replogle

National Institutes of Health (F30AG066418)

  • Kun Leng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 18,902
    views
  • 1,811
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph M Replogle
  2. Jessica L Bonnar
  3. Angela N Pogson
  4. Christina R Liem
  5. Nolan K Maier
  6. Yufang Ding
  7. Baylee J Russell
  8. Xingren Wang
  9. Kun Leng
  10. Alina Guna
  11. Thomas M Norman
  12. Ryan A Pak
  13. Daniel M Ramos
  14. Michael Emmerson Ward
  15. Luke A Gilbert
  16. Martin Kampmann
  17. Jonathan S Weissman
  18. Marco Jost
(2022)
Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors
eLife 11:e81856.
https://doi.org/10.7554/eLife.81856

Share this article

https://doi.org/10.7554/eLife.81856

Further reading

    1. Genetics and Genomics
    Jongkeun Park, WonJong Choi ... Dongwan Hong
    Research Article

    An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region. We detected an increased frequency of amino acid substitutions to lysine (K) and arginine (R) in variants of concern (VOCs). As the virus evolved to Omicron, commonly occurring mutations became fixed components of the new viral sequence. Furthermore, at specific positions of VOCs, only one type of amino acid substitution and a notable absence of mutations at D467 were detected. We found that the binding affinity of SARS-CoV-2 lineages to the ACE2 receptor was impacted by amino acid substitutions. Based on our discoveries, we developed APESS, an evaluation model evaluating infectivity from biochemical and mutational properties. In silico evaluation using real-world sequences and in vitro viral entry assays validated the accuracy of APESS and our discoveries. Using Machine Learning, we predicted mutations that had the potential to become more prominent. We created AIVE, a web-based system, accessible at https://ai-ve.org to provide infectivity measurements of mutations entered by users. Ultimately, we established a clear link between specific viral properties and increased infectivity, enhancing our understanding of SARS-CoV-2 and enabling more accurate predictions of the virus.

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.