Redox regulation of Kv7 channels through EF3 hand of calmodulin

  1. Eider Nuñez
  2. Frederick Jones
  3. Arantza Muguruza-Montero
  4. Janire Urrutia
  5. Alejandra Aguado
  6. Covadonga Malo
  7. Ganeko Bernardo-Seisdedos
  8. Carmen Domene
  9. Oscar Millet
  10. Nikita Gamper
  11. Alvaro Villarroel  Is a corresponding author
  1. Spanish National Research Council, Spain
  2. University of Leeds, United Kingdom
  3. Atlas Molecular Pharma SL, Spain
  4. University of Bath, United Kingdom
  5. CIC bioGUNE, Spain

Abstract

Neuronal KV7 channels, important regulators of cell excitability, are among the most sensitive proteins to reactive oxygen species. The S2S3 linker of the voltage sensor was reported as a site mediating redox modulation of the channels. Recent structural insights reveal potential interactions between this linker and the Ca2+-binding loop of the third EF-hand of calmodulin (CaM), which embraces an antiparallel fork formed by the C-terminal helices A and B, constituting the Calcium Responsive Domain (CRD). We found that precluding Ca2+ binding to the EF3 hand, but not to EF1, EF2 or EF4 hands, abolishes oxidation-induced enhancement of KV7.4 currents. Monitoring FRET between helices A and B using purified CRD domains tagged with fluorescent proteins, we observed that S2S3 peptides cause a reversal of the signal in the presence of Ca2+, but have no effect in the absence of this cation or if the peptide is oxidized. The capacity of loading EF3 with Ca2+ is essential for this reversal of the FRET signal, whereas the consequences of obliterating Ca2+ binding to EF1, EF2 or EF4 are negligible. Furthermore, we show that EF3 is critical for translating Ca2+ signals to reorient the AB fork. Our data is consistent with the proposal that oxidation of cysteine residues in the S2S3 loop relieves KV7 channels from a constitutive inhibition imposed by interactions between the EF3 hand of CaM which is crucial for this signaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Eider Nuñez

    Instituto Biofisika, Spanish National Research Council, Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Frederick Jones

    Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Arantza Muguruza-Montero

    Instituto Biofisika, Spanish National Research Council, Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Janire Urrutia

    Instituto Biofisika, Spanish National Research Council, Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8546-292X
  5. Alejandra Aguado

    Instituto Biofisika, Spanish National Research Council, Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Covadonga Malo

    Instituto Biofisika, Spanish National Research Council, Leioa, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Ganeko Bernardo-Seisdedos

    Atlas Molecular Pharma SL, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Carmen Domene

    Department of Chemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Oscar Millet

    Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, Derio, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Nikita Gamper

    Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5806-0207
  11. Alvaro Villarroel

    Instituto Biofisika, Spanish National Research Council, Leioa, Spain
    For correspondence
    alvaro.villarroel@csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1096-7824

Funding

Ministerio de Ciencia e Innovación (PID2021-128286NB-100)

  • Alvaro Villarroel

Eusko Jaurlaritza (PRE_2018-2_0082)

  • Eider Nuñez

Eusko Jaurlaritza (POS_2021_1_0017)

  • Eider Nuñez

Eusko Jaurlaritza (PRE_2018-2_0126)

  • Arantza Muguruza-Montero

Ministerio de Ciencia e Innovación (RTI2018‐097839-B-100)

  • Alvaro Villarroel

Ministerio de Ciencia e Innovación (RTI2018-101269-B-I00)

  • Oscar Millet

Wellcome Trust (212302/Z/18/Z)

  • Nikita Gamper

Medical Research Centre (MR/P015727/1)

  • Frederick Jones

Eusko Jaurlaritza (IT1707-22)

  • Alvaro Villarroel

Eusko Jaurlaritza (IT1165-19)

  • Alvaro Villarroel

Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza (BG2019)

  • Alvaro Villarroel

Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza (KK-2020/00110)

  • Alvaro Villarroel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Henry M Colecraft, Columbia University, United States

Version history

  1. Received: July 18, 2022
  2. Preprint posted: September 13, 2022 (view preprint)
  3. Accepted: February 10, 2023
  4. Accepted Manuscript published: February 20, 2023 (version 1)
  5. Version of Record published: March 6, 2023 (version 2)

Copyright

© 2023, Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 696
    Page views
  • 124
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eider Nuñez
  2. Frederick Jones
  3. Arantza Muguruza-Montero
  4. Janire Urrutia
  5. Alejandra Aguado
  6. Covadonga Malo
  7. Ganeko Bernardo-Seisdedos
  8. Carmen Domene
  9. Oscar Millet
  10. Nikita Gamper
  11. Alvaro Villarroel
(2023)
Redox regulation of Kv7 channels through EF3 hand of calmodulin
eLife 12:e81961.
https://doi.org/10.7554/eLife.81961

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas, Benjamin A Himes, Nikolaus Grigorieff
    Research Advance

    Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.

    1. Cell Biology
    2. Immunology and Inflammation
    Yijun Zhang, Tao Wu ... Li Wu
    Research Article

    Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.