Environmental morphing enables informed dispersal of the dandelion diaspore

  1. Madeleine Seale
  2. Oleksandr Zhdanov
  3. Merel Barbara Soons
  4. Cathal Cummins
  5. Erika Kroll
  6. Michael R Blatt
  7. Hossein Zare-Behtash
  8. Angela Busse
  9. Enrico Mastropaolo
  10. James M Bullock
  11. Ignazio Maria Viola
  12. Naomi Nakayama  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Glasgow, United Kingdom
  3. Utrecht University, Netherlands
  4. Heriot-Watt University, United Kingdom
  5. University of Edinburgh, United Kingdom
  6. UK Centre for Ecology & Hydrology, United Kingdom
  7. Imperial College London, United Kingdom

Abstract

Animal migration is highly sensitised to environmental cues, but plant dispersal is considered largely passive. The common dandelion, Taraxacum officinale, bears an intricate haired pappus facilitating flight. The pappus enables the formation of a separated vortex ring during flight; however, the pappus structure is not static but reversibly changes shape by closing in response to moisture. We hypothesised that this leads to changed dispersal properties in response to environmental conditions. Using wind tunnel experiments for flow visualisation, particle image velocimetry, and flight tests we characterised the fluid mechanics effects of the pappus morphing. We also modelled dispersal to understand the impact of pappus morphing on diaspore distribution. Pappus morphing dramatically alters the fluid mechanics of diaspore flight. We found that when the pappus closes in moist conditions, the drag coefficient decreases and thus the falling velocity is greatly increased. Detachment of diaspores from the parent plant also substantially decreases. The change in detachment when the pappus closes increases dispersal distances by reducing diaspore release when wind speeds are low. We propose that moisture-dependent pappus-morphing is a form of informed dispersal allowing rapid responses to changing conditions.

Data availability

The Source data for all figures has been deposited to Zenodo, doi: 10.5281/zenodo.7038366

The following data sets were generated

Article and author information

Author details

  1. Madeleine Seale

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Oleksandr Zhdanov

    James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1742-9765
  3. Merel Barbara Soons

    Ecology and Biodiversity group, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Cathal Cummins

    School of Energy, Geosciences, Infrastructure and Environment, Heriot-Watt University, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Erika Kroll

    School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8832-7208
  6. Michael R Blatt

    Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Hossein Zare-Behtash

    James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Angela Busse

    James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Enrico Mastropaolo

    School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. James M Bullock

    UK Centre for Ecology & Hydrology, Wallingford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Ignazio Maria Viola

    School of Engineering, Institute for Energy Systems, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3831-8423
  12. Naomi Nakayama

    Department of Bioengineering, Imperial College London, London, United Kingdom
    For correspondence
    n.nakayama@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9390-3545

Funding

Leverhulme Trust (RPG-2016-255)

  • Enrico Mastropaolo
  • Ignazio Maria Viola
  • Naomi Nakayama

Leverhulme Trust (ECF-2019-424)

  • Madeleine Seale

Biotechnology and Biological Sciences Research Council (P011586/1 and T006153/1)

  • Michael R Blatt

European Commission (ERC-2020-COG 101001499)

  • Ignazio Maria Viola

Royal Society (UF140640 and URF-R-201035)

  • Naomi Nakayama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Seale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,083
    views
  • 261
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madeleine Seale
  2. Oleksandr Zhdanov
  3. Merel Barbara Soons
  4. Cathal Cummins
  5. Erika Kroll
  6. Michael R Blatt
  7. Hossein Zare-Behtash
  8. Angela Busse
  9. Enrico Mastropaolo
  10. James M Bullock
  11. Ignazio Maria Viola
  12. Naomi Nakayama
(2022)
Environmental morphing enables informed dispersal of the dandelion diaspore
eLife 11:e81962.
https://doi.org/10.7554/eLife.81962

Share this article

https://doi.org/10.7554/eLife.81962

Further reading

    1. Physics of Living Systems
    James E Hammond, Ruth E Baker, Berta Verd
    Research Article

    Vertebrates have evolved great diversity in the number of segments dividing the trunk body, however, the developmental origin of the evolvability of this trait is poorly understood. The number of segments is thought to be determined in embryogenesis as a product of morphogenesis of the pre-somitic mesoderm (PSM) and the periodicity of a molecular oscillator active within the PSM known as the segmentation clock. Here, we explore whether the clock and PSM morphogenesis exhibit developmental modularity, as independent evolution of these two processes may explain the high evolvability of segment number. Using a computational model of the clock and PSM parameterised for zebrafish, we find that the clock is broadly robust to variation in morphogenetic processes such as cell ingression, motility, compaction, and cell division. We show that this robustness is in part determined by the length of the PSM and the strength of phase coupling in the clock. As previous studies report no changes to morphogenesis upon perturbing the clock, we suggest that the clock and morphogenesis of the PSM exhibit developmental modularity.

    1. Physics of Living Systems
    Emmanuel Akabuogu, Victor Carneiro da Cunha Martorelli ... Thomas A Waigh
    Research Article

    Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.