The landscape of transcriptional and 1translational changes over 22 years of bacterial adaptation

  1. John S Favate  Is a corresponding author
  2. Shun Liang
  3. Alexander L Cope
  4. Srujana Samhita Yadavalli
  5. Premal Shah  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States

Abstract

Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here we use the E. coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.

Data availability

Sequencing data have been deposited in GEO under accession code GSE164308.All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures.Code for all data processing and subsequent analysis can be found in a series of R markdown documents uploaded to GitHub https://github.com/shahlab/LTEE_gene_expression_2

The following data sets were generated

Article and author information

Author details

  1. John S Favate

    Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, United States
    For correspondence
    john.favate@rutgers.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6344-4854
  2. Shun Liang

    Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    No competing interests declared.
  3. Alexander L Cope

    Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    No competing interests declared.
  4. Srujana Samhita Yadavalli

    Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    No competing interests declared.
  5. Premal Shah

    Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, United States
    For correspondence
    premal.shah@rutgers.edu
    Competing interests
    Premal Shah, is a scientific advisory board member of Trestle Biosciences and consults for Ribo-Therapeutics. Is also a director at an RNA-therapeutics startup..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8424-4218

Funding

National Institute of General Medical Sciences (ESI-MIRA R35 GM124976)

  • Premal Shah

National Science Foundation (DBI 1936046)

  • Premal Shah

Rutgers, The State University of New Jersey (Start-up funds)

  • Srujana Samhita Yadavalli
  • Premal Shah

National Institutes of Health (IRACDA NJ/NY for Science Partnerships in Research and Education Postdoctoral program NIH PAR-19-366)

  • Alexander L Cope

National Institute of Diabetes and Digestive and Kidney Diseases (Subcontract from R01 DK056645)

  • Premal Shah

National Institute of Diabetes and Digestive and Kidney Diseases (Subcontract from R01 DK109714)

  • Premal Shah

National Institute of Diabetes and Digestive and Kidney Diseases (Subcontract from R01 DK124369)

  • Premal Shah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Favate et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,513
    views
  • 232
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John S Favate
  2. Shun Liang
  3. Alexander L Cope
  4. Srujana Samhita Yadavalli
  5. Premal Shah
(2022)
The landscape of transcriptional and 1translational changes over 22 years of bacterial adaptation
eLife 11:e81979.
https://doi.org/10.7554/eLife.81979

Share this article

https://doi.org/10.7554/eLife.81979

Further reading

    1. Evolutionary Biology
    Zofia Dubicka, Jarosław Tyszka ... Ulf Bickmeyer
    Research Article

    Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ ‘mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineralization within intracellular vesicles’ attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Philipp H Schiffer, Paschalis Natsidis ... Maximilian J Telford
    Research Article

    The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help to understand the evolution and biology of enigmatic species better. Here we assemble and analyse the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome like scaffolds, with repeat content and intron, exon and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signalling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.