Human DUX4 and mouse Dux interact with STAT1 and broadly inhibit interferon-stimulated gene induction

  1. Amy E Spens
  2. Nicholas A Sutliff
  3. Sean R Bennett
  4. Amy E Campbell
  5. Stephen J Tapscott  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. The University of Texas Southwestern Medical Center, United States
  3. University of Colorado Anschutz Medical Campus, United States

Abstract

DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNg-induction of MHC Class I and contributes to immune evasion. We show that the DUX4 protein interacts with STAT1 and broadly suppresses expression of IFNg stimulated genes by decreasing bound STAT1 and Pol-II recruitment. Transcriptional suppression of ISGs requires conserved (L)LxxL(L) motifs in the carboxyterminal region of DUX4 and phosphorylation of STAT1 Y701 enhances interaction with DUX4. Consistent with these findings, expression of endogenous DUX4 in FSHD muscle cells and the CIC-DUX4 fusion containing the DUX4 CTD in a sarcoma cell line inhibit IFNg-induction of ISGs. Mouse Dux similarly interacted with STAT1 and suppressed IFNg induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.

Data availability

RNA sequencing data and CUT&Tag data are available through GEO GSE186244 and GSE209785, respectively. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD029215. Standard packages were used for RNA sequencing and CUT&Tag analyses (see 'Materials & Methods'); specific code available upon request.

The following data sets were generated

Article and author information

Author details

  1. Amy E Spens

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicholas A Sutliff

    Human Biology Division, The University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sean R Bennett

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amy E Campbell

    Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6513-5836
  5. Stephen J Tapscott

    Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    stapscot@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0319-0968

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR045203)

  • Stephen J Tapscott

National Cancer Institute (P30 CA015704)

  • Stephen J Tapscott

National Institutes of Health (T32 HG000035)

  • Amy E Spens

Friends of FSH Research

  • Stephen J Tapscott

Chris Carrino Foundation

  • Stephen J Tapscott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Spens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,372
    views
  • 215
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy E Spens
  2. Nicholas A Sutliff
  3. Sean R Bennett
  4. Amy E Campbell
  5. Stephen J Tapscott
(2023)
Human DUX4 and mouse Dux interact with STAT1 and broadly inhibit interferon-stimulated gene induction
eLife 12:e82057.
https://doi.org/10.7554/eLife.82057

Share this article

https://doi.org/10.7554/eLife.82057

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.