Comparing the evolutionary dynamics of predominant SARS-CoV-2 virus lineages co-circulating in Mexico
Abstract
Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated during the first year of local transmission. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in Mexico. Lineages B.1.1.222 and B.1.1.519 exhibited similar dynamics, constituting clades that likely originated in Mexico and persisted for >12 months. Lineages B.1.1.7, P.1 and B.1.617.2 also displayed similar dynamics, characterized by multiple introduction events leading to a few successful extended local transmission chains that persisted for several months. For the largest B.1.617.2 clades, we further explored viral lineage movements across Mexico. Many clades were located within the south region of the country, suggesting that this area played a key role in the spread of SARS-CoV-2 in Mexico.
Data availability
Virus genome IDs and GISAID accession numbers for the sequences used in each dataset are provided in the Supplementary file 1 file. All genomic and epidemiological data supporting the findings of this study is publicly available from GISAID/GenBank, from the Ministry Of Health Mexico102, and/or from the 'Our World in Data' coronavirus pandemic web portal 29. For the GISAID data used, the corresponding acknowledgement table is available on the 'GISAID Data Acknowledgement Locator' under the EPI_SET_20220405qd and EPI_SET_20220215at keys 49. Our bioinformatic pipeline implementing a migration data and phylogenetically-informed sequence subsampling approach is publicly available at https://github.com/rhysinward/Mexico_subsampling.
Article and author information
Author details
Funding
FNRS (F.4515.22)
- Simon Dellicour
UNAM (DGAPA-PAPIIT (IN214421)
- Antonio Lazcano
UNAM (DGAPA-PAPIME (PE204921))
- Antonio Lazcano
Research Foundation Flanders (G098321N)
- Simon Dellicour
European Horizon 2020 project MOOD (874850)
- Simon Dellicour
Leverhulme Trust (ECF-2019-542)
- Marina Escalera Zamudio
European Horizon 2020 project MOOD (874850)
- Oliver Pybus
European Horizon 2020 project MOOD (874850)
- Moritz U G Kraemer
CONACyT Vigilancia Genómica del Virus SARS-CoV-2 en México-2022"" (PP-F003)
- Carlos F Arias
Ministry of Education, Science, Technology and Innovation of Mexico City (057)
- Carlos F Arias
AHF Global Public Health Institute at the University of Miami (Genomic surveillance for SARS-CoV-2 variants in Mexico"")
- Carlos F Arias
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Castelán-Sánchez et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,162
- views
-
- 218
- downloads
-
- 7
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.
-
- Epidemiology and Global Health
- Microbiology and Infectious Disease
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997—2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.