Interdependent progression of bidirectional sister replisomes in E. coli

  1. Po Jui Chen
  2. Anna B McMullin
  3. Bryan J Visser
  4. Qian Mei
  5. Susan M Rosenberg
  6. David Bates  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Rice University, United States

Abstract

Bidirectional DNA replication complexes initiated from the same origin remain colocalized in a factory configuration for part or all their lifetimes. However, there is little evidence that sister replisomes are functionally interdependent, and the consequence of factory replication is unknown. Here, we investigated the functional relationship between sister replisomes in E. coli, which naturally exhibits both factory and solitary configurations in the same replication cycle. Using an inducible transcription factor roadblocking system, we found that blocking one replisome caused a significant decrease in overall progression and velocity of the sister replisome. Remarkably, progression was impaired only if the block occurred while sister replisomes were still in a factory configuration - blocking one fork had no significant effect on the other replisome when sister replisomes were physically separate. Disruption of factory replication also led to increased fork stalling and requirement of fork restart mechanisms. These results suggest that physical association between sister replisomes is important for establishing an efficient and uninterrupted replication program. We discuss the implications of our findings on mechanisms of replication factory structure and function, and cellular strategies of replicating problematic DNA such as highly transcribed segments.

Data availability

Sequencing data generated in this study have been deposited in the National Center for Biotechnology (NCBI) Sequence Read Archive (SRA), BioProject PRJNA860928.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Po Jui Chen

    Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna B McMullin

    Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bryan J Visser

    Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Qian Mei

    Systems, Synthetic, and Physical Biology Program, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan M Rosenberg

    Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David Bates

    Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
    For correspondence
    bates@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0870-055X

Funding

National Institutes of Health (R01 GM102679)

  • David Bates

National Institutes of Health (R01 GM135368)

  • David Bates

National Institutes of Health (R35 GM122598)

  • Susan M Rosenberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University, United States

Version history

  1. Preprint posted: July 27, 2022 (view preprint)
  2. Received: July 28, 2022
  3. Accepted: January 5, 2023
  4. Accepted Manuscript published: January 9, 2023 (version 1)
  5. Version of Record published: January 20, 2023 (version 2)
  6. Version of Record updated: May 15, 2023 (version 3)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 937
    views
  • 164
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Po Jui Chen
  2. Anna B McMullin
  3. Bryan J Visser
  4. Qian Mei
  5. Susan M Rosenberg
  6. David Bates
(2023)
Interdependent progression of bidirectional sister replisomes in E. coli
eLife 12:e82241.
https://doi.org/10.7554/eLife.82241

Share this article

https://doi.org/10.7554/eLife.82241

Further reading

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.