Human DLC3 and Drosophila Cv-c function in testis development: using a model organism to analyse variations in sex development
Abstract
Background: The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development. Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients.
Methods: We have studied the requirement of cv-c, the Drosophila ortholog of DLC3, for Drosophila gonad development as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development.
Results: We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting a functional conservation. Expression of different Cv-c protein variants demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity.
Conclusions: This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Funding: María de Maeztu Unit excellence grants MDM-2016-0687 and CEX-2020-001088-M. Ministerio de Ciencia e Innovación grant PID2019-104656GB-I00 cofunded by the European Regional Development Fund (FEDER). Swiss National Science Foundation (PP00P3_194807). Swiss National Supercomputing Centre under project ID s1132. European Research Council under the European Union's Horizon 2020 research and innovation program (grant agreement no. 803952). Swiss National Science Foundation's Grant 320030-184807.Swiss National Science Foundation (grant number SCOPES IZ73Z0_152347/1) and National Academy of Sciences of Ukraine, project 'Molecular-Genetic Mechanisms of Human Disorders of Sexual Development' [0121U110054].
Data availability
All data generated during this study are included in the manuscript.
Article and author information
Author details
Funding
Maria de Maetzu Unit Excellence grants (MDM-2016-0687)
- James Castelli-Gair Hombría
Maria de Maetzu Unit Excellence grants (CEX-2020-001088-M)
- James Castelli-Gair Hombría
Ministerio de Ciencia, Innovación y Universidades (PID2019-104656GB-I00)
- James Castelli-Gair Hombría
Swiss National Science Foundation (PP00P3_194807)
- Stefano Vanni
Swiss National Supercomputing Center (s1132)
- Stefano Vanni
H2020 European Research Council (803952)
- Stefano Vanni
Swiss National Science Foundation (SCOPES IZ73Z0_152347/1)
- Ludmila Livshits
National Academy of Sciences of Ukraine (0121U110054)
- Ludmila Livshits
Swiss National Science Foundation (320030-184807)
- Anna Biason-Lauber
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: All clinical investigations were performed according to the declaration of Helsinki principles. The study was approved by the Geneva ethical committee CCER, authorization number 14-121. The patients and/or their legal guardians gave informed written consent to the study.
Copyright
© 2022, Sotillos et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,044
- views
-
- 129
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.
-
- Developmental Biology
The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.