Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences

  1. Stefan Strütt
  2. Thibaut Sellinger
  3. Sylvain Glémin
  4. Aurélien Tellier  Is a corresponding author
  5. Stefan Laurent  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. Technical University of Munich, Germany
  3. Université Rennes 1, CNRS, France

Abstract

The evolution from outcrossing to selfing is a transition that occurred recurrently throughout the eukaryote tree of life, in plants, animals, fungi and algae. Despite some short-term advantages, selfing is supposed to be an evolutionary dead-end reproductive strategy on the long-term and its tippy distribution on phylogenies suggests that most selfing species are of recent origin. However, dating such transitions is challenging while it is central for this hypothesis. We build on previous theories to explicit the differential effect of past changes in selfing rate or in population size on the probability of recombination events along the genome. This allows us to develop two methods making use of full genome polymorphism data to 1) test if a transition from outcrossing to selfing occurred, and 2) infer its age. The sequentially Markov coalescent based (teSMC) and the Approximate Bayesian Computation (tsABC) methods use a common framework based on a transition matrix summarizing the distribution of times to the most recent common ancestor along the genome, allowing to estimate changes in the ratio of population recombination and mutation rates in time. We first demonstrate that our methods can disentangle between past change in selfing rate from past changes in demographic history. Second, we assess the accuracy of our methods and show that transitions to selfing as old as approximatively 2.5Ne generations can be identified from polymorphism data. Third, our estimates are robust to the presence of linked negative selection on coding sequences. Finally, as a proof of principle, we apply both methods to three populations from Arabidopsis thaliana, recovering a transition to selfing which occurred approximately 600,000 years ago. Our methods pave the way to study recent transitions to predominant self-fertilization in selfing organisms and to better account for variation in mating systems in demographic inferences.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is available at the following repositories.tsABC: https://github.com/sstruett/tsABCteSMC: https://github.com/TPPSellinger/eSMC2scripts used for the analyses in Strütt and Sellinger et al: https://github.com/laurentlab-mpipz/struett_and_sellinger_et_al

The following previously published data sets were used

Article and author information

Author details

  1. Stefan Strütt

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2785-2815
  2. Thibaut Sellinger

    Department of Life Science Systems, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvain Glémin

    ECOBIO [Ecosystèmes, Biodiversité, Evolution), Université Rennes 1, CNRS, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7260-4573
  4. Aurélien Tellier

    Department of Life Science Systems, Technical University of Munich, Munich, Germany
    For correspondence
    aurelien.tellier@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Laurent

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    For correspondence
    laurent@mpipz.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4016-5427

Funding

Max Planck Institute for Plant Breeding Research (open access funding)

  • Stefan Strütt
  • Stefan Laurent

No external funding was received for this work.

Reviewing Editor

  1. Vincent Castric, Université de Lille, France

Version history

  1. Preprint posted: August 1, 2022 (view preprint)
  2. Received: August 2, 2022
  3. Accepted: May 8, 2023
  4. Accepted Manuscript published: May 11, 2023 (version 1)
  5. Version of Record published: June 28, 2023 (version 2)

Copyright

© 2023, Strütt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 955
    views
  • 126
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Strütt
  2. Thibaut Sellinger
  3. Sylvain Glémin
  4. Aurélien Tellier
  5. Stefan Laurent
(2023)
Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences
eLife 12:e82384.
https://doi.org/10.7554/eLife.82384

Share this article

https://doi.org/10.7554/eLife.82384

Further reading

    1. Evolutionary Biology
    Case Vincent Miller, Jen A Bright ... Michael Pittman
    Research Article

    Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.

    1. Evolutionary Biology
    Mátyás Paczkó, Eörs Szathmáry, András Szilágyi
    Research Article

    The RNA world hypothesis proposes that during the early evolution of life, primordial genomes of the first self-propagating evolutionary units existed in the form of RNA-like polymers. Autonomous, non-enzymatic, and sustained replication of such information carriers presents a problem, because product formation and hybridization between template and copy strands reduces replication speed. Kinetics of growth is then parabolic with the benefit of entailing competitive coexistence, thereby maintaining diversity. Here, we test the information-maintaining ability of parabolic growth in stochastic multispecies population models under the constraints of constant total population size and chemostat conditions. We find that large population sizes and small differences in the replication rates favor the stable coexistence of the vast majority of replicator species (‘genes’), while the error threshold problem is alleviated relative to exponential amplification. In addition, sequence properties (GC content) and the strength of resource competition mediated by the rate of resource inflow determine the number of coexisting variants, suggesting that fluctuations in building block availability favored repeated cycles of exploration and exploitation. Stochastic parabolic growth could thus have played a pivotal role in preserving viable sequences generated by random abiotic synthesis and providing diverse genetic raw material to the early evolution of functional ribozymes.