Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences

  1. Stefan Strütt
  2. Thibaut Sellinger
  3. Sylvain Glémin
  4. Aurélien Tellier  Is a corresponding author
  5. Stefan Laurent  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. Technical University of Munich, Germany
  3. Université Rennes 1, CNRS, France

Abstract

The evolution from outcrossing to selfing is a transition that occurred recurrently throughout the eukaryote tree of life, in plants, animals, fungi and algae. Despite some short-term advantages, selfing is supposed to be an evolutionary dead-end reproductive strategy on the long-term and its tippy distribution on phylogenies suggests that most selfing species are of recent origin. However, dating such transitions is challenging while it is central for this hypothesis. We build on previous theories to explicit the differential effect of past changes in selfing rate or in population size on the probability of recombination events along the genome. This allows us to develop two methods making use of full genome polymorphism data to 1) test if a transition from outcrossing to selfing occurred, and 2) infer its age. The sequentially Markov coalescent based (teSMC) and the Approximate Bayesian Computation (tsABC) methods use a common framework based on a transition matrix summarizing the distribution of times to the most recent common ancestor along the genome, allowing to estimate changes in the ratio of population recombination and mutation rates in time. We first demonstrate that our methods can disentangle between past change in selfing rate from past changes in demographic history. Second, we assess the accuracy of our methods and show that transitions to selfing as old as approximatively 2.5Ne generations can be identified from polymorphism data. Third, our estimates are robust to the presence of linked negative selection on coding sequences. Finally, as a proof of principle, we apply both methods to three populations from Arabidopsis thaliana, recovering a transition to selfing which occurred approximately 600,000 years ago. Our methods pave the way to study recent transitions to predominant self-fertilization in selfing organisms and to better account for variation in mating systems in demographic inferences.

Data availability

The current manuscript is a computational study, so no data have been generated for this manuscript. Modelling code is available at the following repositories.tsABC: https://github.com/sstruett/tsABCteSMC: https://github.com/TPPSellinger/eSMC2scripts used for the analyses in Strütt and Sellinger et al: https://github.com/laurentlab-mpipz/struett_and_sellinger_et_al

The following previously published data sets were used

Article and author information

Author details

  1. Stefan Strütt

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2785-2815
  2. Thibaut Sellinger

    Department of Life Science Systems, Technical University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sylvain Glémin

    ECOBIO [Ecosystèmes, Biodiversité, Evolution), Université Rennes 1, CNRS, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7260-4573
  4. Aurélien Tellier

    Department of Life Science Systems, Technical University of Munich, Munich, Germany
    For correspondence
    aurelien.tellier@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan Laurent

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    For correspondence
    laurent@mpipz.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4016-5427

Funding

Max Planck Institute for Plant Breeding Research (open access funding)

  • Stefan Strütt
  • Stefan Laurent

No external funding was received for this work.

Copyright

© 2023, Strütt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,500
    views
  • 170
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Strütt
  2. Thibaut Sellinger
  3. Sylvain Glémin
  4. Aurélien Tellier
  5. Stefan Laurent
(2023)
Joint inference of evolutionary transitions to self-fertilization and demographic history using whole-genome sequences
eLife 12:e82384.
https://doi.org/10.7554/eLife.82384

Share this article

https://doi.org/10.7554/eLife.82384

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.

    1. Evolutionary Biology
    Yiheng Zhang, Xing Wang ... Xiaoguang Yang
    Research Article

    Although fossil evidence suggests the existence of an early muscular system in the ancient cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently, the polyp inside the periderm of olivooids was demonstrated to be a calyx-like structure, most likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus presumably contributing to feeding and respiration. Here, we simulate the contraction and expansion of the microscopic periderm-bearing olivooid Quadrapyrgites via the fluid-structure interaction computational fluid dynamics (CFD) method to investigate their feeding and respiratory activities. The simulations show that the rate of water inhalation by the polyp subumbrella is positively correlated with the rate of contraction and expansion of the coronal muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations also show that the frequent inhalation/exhalation of water through the periderm polyp expansion/contraction conducted by the muscular system of Quadrapyrgites most likely represents the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of muscle contraction may have been indispensable in the stepwise evolution of active feeding and subsequent swimming in a higher flow (or higher Reynolds number) environment.