Inactivation of Invs/Nphp2 in renal epithelial cells drives infantile nephronophthisis like phenotypes in mouse
Abstract
Nephronophthisis (NPHP) is a ciliopathy characterized by renal fibrosis and cyst formation, and accounts for a significant portion of end stage renal disease in children and young adults. Currently no targeted therapy is available for this disease. INVS/NPHP2 is one of the 25 NPHP genes identified to date. In mouse, global knockout of Invs leads to renal fibrosis and cysts. However, the precise contribution of different cell types and the relationship between epithelial cysts and interstitial fibrosis remains undefined. Here, we generated and characterized cell-type specific knockout mouse models of Invs, investigated the impact of removing cilia genetically on phenotype severity in Invs mutants and evaluated the impact of the histone deacetylase inhibitor valproic acid (VPA) on Invs mutants. Epithelial specific knockout of Invs in Invsflox/flox;Cdh16-Cre mutant mice resulted in renal cyst formation and severe stromal fibrosis, while Invsflox/flox;Foxd1-Cre mice, where Invs is deleted in stromal cells, displayed no observable phenotypes up to the young adult stage, highlighting a significant role of epithelial-stromal crosstalk. Further, increased cell proliferation and myofibroblast activation occurred early during disease progression and preceded detectable cyst formation in the Invsflox/flox;Cdh16-Cre kidney. Moreover, concomitant removal of cilia partially suppressed the phenotypes of the Invsflox/flox;Cdh16-Cre mutant kidney, supporting a significant interaction of cilia and Invs function in vivo. Finally, VPA reduced cyst burden, decreased cell proliferation and ameliorated kidney function decline in Invs mutant mice. Our results reveal the critical role of renal epithelial cilia in NPHP and suggest the possibility of repurposing VPA for NPHP treatment.
Data availability
No large scale datasets generated. Data analyzed can be found in source data files for figures 1-7, figure 4 figure supplement 1 and figure 7 figure supplement 1.
Article and author information
Author details
Funding
NIH (R01DK113135)
- Zhaoxia Sun
NIH (R01HD093608)
- Zhaoxia Sun
NIH (R35HL145249)
- Martina Brueckner
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All mouse experiments were performed in Yale University School of Medicine in accordance with Yale University Institutional Animal Care and Use Committee guidelines. Protocols were approved by Yale University Institutional Animal care and Use Committee (Protocol number: 2022-11546).
Copyright
© 2023, Li et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,158
- views
-
- 199
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 4
- citations for umbrella DOI https://doi.org/10.7554/eLife.82395