Inactivation of Invs/Nphp2 in renal epithelial cells drives infantile nephronophthisis like phenotypes in mouse

  1. Yuanyuan Li
  2. Wenyan Xu
  3. Svetlana Makova
  4. Martina Brueckner
  5. Zhaoxia Sun  Is a corresponding author
  1. Yale University, United States

Abstract

Nephronophthisis (NPHP) is a ciliopathy characterized by renal fibrosis and cyst formation, and accounts for a significant portion of end stage renal disease in children and young adults. Currently no targeted therapy is available for this disease. INVS/NPHP2 is one of the 25 NPHP genes identified to date. In mouse, global knockout of Invs leads to renal fibrosis and cysts. However, the precise contribution of different cell types and the relationship between epithelial cysts and interstitial fibrosis remains undefined. Here, we generated and characterized cell-type specific knockout mouse models of Invs, investigated the impact of removing cilia genetically on phenotype severity in Invs mutants and evaluated the impact of the histone deacetylase inhibitor valproic acid (VPA) on Invs mutants. Epithelial specific knockout of Invs in Invsflox/flox;Cdh16-Cre mutant mice resulted in renal cyst formation and severe stromal fibrosis, while Invsflox/flox;Foxd1-Cre mice, where Invs is deleted in stromal cells, displayed no observable phenotypes up to the young adult stage, highlighting a significant role of epithelial-stromal crosstalk. Further, increased cell proliferation and myofibroblast activation occurred early during disease progression and preceded detectable cyst formation in the Invsflox/flox;Cdh16-Cre kidney. Moreover, concomitant removal of cilia partially suppressed the phenotypes of the Invsflox/flox;Cdh16-Cre mutant kidney, supporting a significant interaction of cilia and Invs function in vivo. Finally, VPA reduced cyst burden, decreased cell proliferation and ameliorated kidney function decline in Invs mutant mice. Our results reveal the critical role of renal epithelial cilia in NPHP and suggest the possibility of repurposing VPA for NPHP treatment.

Data availability

No large scale datasets generated. Data analyzed can be found in source data files for figures 1-7, figure 4 figure supplement 1 and figure 7 figure supplement 1.

Article and author information

Author details

  1. Yuanyuan Li

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenyan Xu

    Department of Genetics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Svetlana Makova

    Department of Pediatrics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Martina Brueckner

    Department of Pediatrics, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhaoxia Sun

    Department of Genetics, Yale University, new haven, United States
    For correspondence
    zhaoxia.sun@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2307-7719

Funding

NIH (R01DK113135)

  • Zhaoxia Sun

NIH (R01HD093608)

  • Zhaoxia Sun

NIH (R35HL145249)

  • Martina Brueckner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were performed in Yale University School of Medicine in accordance with Yale University Institutional Animal Care and Use Committee guidelines. Protocols were approved by Yale University Institutional Animal care and Use Committee (Protocol number: 2022-11546).

Reviewing Editor

  1. Gregory G Germino, National Institutes of Health, United States

Publication history

  1. Received: August 2, 2022
  2. Accepted: March 14, 2023
  3. Accepted Manuscript published: March 15, 2023 (version 1)

Copyright

© 2023, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 130
    Page views
  • 44
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuanyuan Li
  2. Wenyan Xu
  3. Svetlana Makova
  4. Martina Brueckner
  5. Zhaoxia Sun
(2023)
Inactivation of Invs/Nphp2 in renal epithelial cells drives infantile nephronophthisis like phenotypes in mouse
eLife 12:e82395.
https://doi.org/10.7554/eLife.82395

Further reading

    1. Cell Biology
    Danielle B Buglak, Pauline Bougaran ... Victoria L Bautch
    Research Article

    Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.

    1. Cell Biology
    Agustin Leonardo Lujan, Ombretta Foresti ... Vivek Malhotra
    Research Article Updated

    We show that TANGO2 in mammalian cells localizes predominantly to mitochondria and partially at mitochondria sites juxtaposed to lipid droplets (LDs) and the endoplasmic reticulum. HepG2 cells and fibroblasts of patients lacking TANGO2 exhibit enlarged LDs. Quantitative lipidomics revealed a marked increase in lysophosphatidic acid (LPA) and a concomitant decrease in its biosynthetic precursor phosphatidic acid (PA). These changes were exacerbated in nutrient-starved cells. Based on our data, we suggest that TANGO2 function is linked to acyl-CoA metabolism, which is necessary for the acylation of LPA to generate PA. The defect in acyl-CoA availability impacts the metabolism of many other fatty acids, generates high levels of reactive oxygen species, and promotes lipid peroxidation. We suggest that the increased size of LDs is a combination of enrichment in peroxidized lipids and a defect in their catabolism. Our findings help explain the physiological consequence of mutations in TANGO2 that induce acute metabolic crises, including rhabdomyolysis, cardiomyopathy, and cardiac arrhythmias, often leading to fatality upon starvation and stress.