Fast rule switching and slow rule updating in a perceptual categorization task

  1. Flora Bouchacourt
  2. Sina Tafazoli
  3. Marcelo Mattar
  4. Timothy J Buschman
  5. Nathaniel D Daw  Is a corresponding author
  1. Princeton University, United States
  2. University of California, San Diego, United States

Abstract

To adapt to a changing world, we must be able to switch between rules already learned and, at other times, learn rules anew. Often we must do both at the same time, switching between known rules while also constantly re-estimating them. Here, we show these two processes, rule switching and rule learning, rely on distinct but intertwined computations, namely fast inference and slower incremental learning. To this end, we studied how monkeys switched between three rules. Each rule was compositional, requiring the animal to discriminate one of two features of a stimulus and then respond with an associated eye movement along one of two different response axes. By modeling behavior we found the animals learned the axis of response using fast inference (rule switching) while continuously re-estimating the stimulus-response associations within an axis (rule learning). Our results shed light on the computational interactions between rule switching and rule learning, and make testable neural predictions for these interactions.

Data availability

Codes and data supporting the findings of this study is available on GitHub (https://github.com/buschman- lab/FastRuleSwitchingSlowRuleUpdating).

Article and author information

Author details

  1. Flora Bouchacourt

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8893-0143
  2. Sina Tafazoli

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marcelo Mattar

    Department of Cognitive Science, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Timothy J Buschman

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1298-2761
  5. Nathaniel D Daw

    Department of Psychology, Princeton University, Princeton, United States
    For correspondence
    ndaw@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-1430

Funding

U.S. Army Research Office (ARO W911NF-16-1-047)

  • Nathaniel D Daw

NIMH (R01MH129492)

  • Timothy J Buschman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were approved by Princeton University Institutional Animal Care and Use Committee (protocol #3055) and were in accordance with the policies and procedures of the National Institutes of Health.

Reviewing Editor

  1. David Badre, Brown University, United States

Publication history

  1. Preprint posted: January 30, 2022 (view preprint)
  2. Received: August 8, 2022
  3. Accepted: November 13, 2022
  4. Accepted Manuscript published: November 14, 2022 (version 1)
  5. Version of Record published: November 24, 2022 (version 2)

Copyright

© 2022, Bouchacourt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,407
    Page views
  • 229
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Flora Bouchacourt
  2. Sina Tafazoli
  3. Marcelo Mattar
  4. Timothy J Buschman
  5. Nathaniel D Daw
(2022)
Fast rule switching and slow rule updating in a perceptual categorization task
eLife 11:e82531.
https://doi.org/10.7554/eLife.82531

Further reading

    1. Neuroscience
    Movitz Lenninger, Mikael Skoglund ... Arvind Kumar
    Research Article Updated

    According to the efficient coding hypothesis, sensory neurons are adapted to provide maximal information about the environment, given some biophysical constraints. In early visual areas, stimulus-induced modulations of neural activity (or tunings) are predominantly single-peaked. However, periodic tuning, as exhibited by grid cells, has been linked to a significant increase in decoding performance. Does this imply that the tuning curves in early visual areas are sub-optimal? We argue that the time scale at which neurons encode information is imperative to understand the advantages of single-peaked and periodic tuning curves, respectively. Here, we show that the possibility of catastrophic (large) errors creates a trade-off between decoding time and decoding ability. We investigate how decoding time and stimulus dimensionality affect the optimal shape of tuning curves for removing catastrophic errors. In particular, we focus on the spatial periods of the tuning curves for a class of circular tuning curves. We show an overall trend for minimal decoding time to increase with increasing Fisher information, implying a trade-off between accuracy and speed. This trade-off is reinforced whenever the stimulus dimensionality is high, or there is ongoing activity. Thus, given constraints on processing speed, we present normative arguments for the existence of the single-peaked tuning organization observed in early visual areas.

    1. Genetics and Genomics
    2. Neuroscience
    Timothy Wu, Jennifer M Deger ... Joshua M Shulman
    Research Article Updated

    Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.