Fast rule switching and slow rule updating in a perceptual categorization task

  1. Flora Bouchacourt
  2. Sina Tafazoli
  3. Marcelo Mattar
  4. Timothy J Buschman
  5. Nathaniel D Daw  Is a corresponding author
  1. Princeton University, United States
  2. University of California, San Diego, United States

Abstract

To adapt to a changing world, we must be able to switch between rules already learned and, at other times, learn rules anew. Often we must do both at the same time, switching between known rules while also constantly re-estimating them. Here, we show these two processes, rule switching and rule learning, rely on distinct but intertwined computations, namely fast inference and slower incremental learning. To this end, we studied how monkeys switched between three rules. Each rule was compositional, requiring the animal to discriminate one of two features of a stimulus and then respond with an associated eye movement along one of two different response axes. By modeling behavior we found the animals learned the axis of response using fast inference (rule switching) while continuously re-estimating the stimulus-response associations within an axis (rule learning). Our results shed light on the computational interactions between rule switching and rule learning, and make testable neural predictions for these interactions.

Data availability

Codes and data supporting the findings of this study is available on GitHub (https://github.com/buschman- lab/FastRuleSwitchingSlowRuleUpdating).

Article and author information

Author details

  1. Flora Bouchacourt

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8893-0143
  2. Sina Tafazoli

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marcelo Mattar

    Department of Cognitive Science, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Timothy J Buschman

    Department of Psychology, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1298-2761
  5. Nathaniel D Daw

    Department of Psychology, Princeton University, Princeton, United States
    For correspondence
    ndaw@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5029-1430

Funding

U.S. Army Research Office (ARO W911NF-16-1-047)

  • Nathaniel D Daw

NIMH (R01MH129492)

  • Timothy J Buschman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Badre, Brown University, United States

Ethics

Animal experimentation: All experimental procedures were approved by Princeton University Institutional Animal Care and Use Committee (protocol #3055) and were in accordance with the policies and procedures of the National Institutes of Health.

Version history

  1. Preprint posted: January 30, 2022 (view preprint)
  2. Received: August 8, 2022
  3. Accepted: November 13, 2022
  4. Accepted Manuscript published: November 14, 2022 (version 1)
  5. Version of Record published: November 24, 2022 (version 2)

Copyright

© 2022, Bouchacourt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,895
    Page views
  • 302
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Flora Bouchacourt
  2. Sina Tafazoli
  3. Marcelo Mattar
  4. Timothy J Buschman
  5. Nathaniel D Daw
(2022)
Fast rule switching and slow rule updating in a perceptual categorization task
eLife 11:e82531.
https://doi.org/10.7554/eLife.82531

Share this article

https://doi.org/10.7554/eLife.82531

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.