Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling

  1. Yi Fan
  2. Ping Lyu
  3. Ruiye Bi
  4. Chen Cui
  5. Ruoshi Xu
  6. Clifford J Rosen
  7. Quan Yuan  Is a corresponding author
  8. Chenchen Zhou  Is a corresponding author
  1. Sichuan University, China
  2. Sun Yat-sen University, China
  3. Maine Medical Center Research Institute, United States

Abstract

Oral inflammatory diseases such as apical periodontitis are common bacterial infectious diseases that may affect the periapical alveolar bone tissues. A protective process occurs simultaneously with the inflammatory tissue destruction, in which mesenchymal stem cells (MSCs) play a primary role. However, a systematic and precise description of the cellular and molecular composition of the microenvironment of bone affected by inflammation is lacking. In this study, we created a single cell atlas of cell populations that compose alveolar bone in healthy and inflammatory disease states. We investigated changes in expression frequency and patterns related to apical periodontitis, as well as the interactions between MSCs and immunocytes. Our results highlight an enhanced self-supporting network and osteogenic potential within MSCs during apical periodontitis-associated inflammation. MSCs not only differentiated towards osteoblast lineage cells, but also expressed higher levels of osteogenic related markers, including Sparc and Col1a1. This was confirmed by lineage tracing in transgenic mouse models and human samples from oral inflammatory-related alveolar bone lesions. In summary, the current study provides an in-depth description of the microenvironment of MSCs and immunocytes in both healthy and disease states. We also identified key apical periodontitis-associated MSC subclusters and their biomarkers, which could further our understanding of the protective process and the underlying mechanisms of oral inflammatory-related bone disease. Taken together, these results enhance our understanding of heterogeneity and cellular interactions of alveolar bone cells under pathogenic and inflammatory conditions. We provide these data as a tool for investigators not only to better appreciate the repertoire of progenitors that are stress responsive but importantly to help design new therapeutic targets to restore bone lesions caused by apical periodontitis and other inflammatory-related bone diseases.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 2, 3, 4, 5, 6, 7, Figure1-figure supplement 1 and Figure5-figure supplement 3.

The following data sets were generated

Article and author information

Author details

  1. Yi Fan

    Department of Cariology and Endodontics, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7511-9872
  2. Ping Lyu

    Department of Cariology and Endodontics, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9908-9989
  3. Ruiye Bi

    Department of Orthognathic and TMJ Surgery, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen Cui

    Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ruoshi Xu

    Department of Cariology and Endodontics, Sichuan University, Chengdu, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Clifford J Rosen

    Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3436-8199
  7. Quan Yuan

    Department of Oral Implantology, Sichuan University, Chengdu, China
    For correspondence
    yuanquan@scu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  8. Chenchen Zhou

    Department of Orthodontics, Sichuan University, Chengdu, China
    For correspondence
    chenchenzhou5510@scu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6427-5869

Funding

National Natural Science Foundation of China (81800928)

  • Yi Fan

National Natural Science Foundation of China (81901040)

  • Chenchen Zhou

National Natural Science Foundation of China (82171001)

  • Chenchen Zhou

Young Elite Scientist Sponsorship Program by CAST (2020QNRC001)

  • Chenchen Zhou

Young Elite Scientist Sponsorship Program by CAST (2018QNR001)

  • Yi Fan

Sichuan Science and Technology Program (2019YJ0054)

  • Yi Fan

Research Funding from West China School/Hospital of Stomatology Sichuan University (RCDWJS2021-1)

  • Yi Fan

State Key Laboratory of Oral Diseases Open Funding Grant (SKLOD-R013)

  • Yi Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out in accordance with the guidelines of the Institutional Animal Care and Use Committee at the State Key Laboratory of Oral Diseases, Sichuan University (Permit Number: WCHSIRB-D-2021-339).

Human subjects: This study was permitted by the Ethical Committees of the West China Hospital of Stomatology, Sichuan University (Permit Number: WCHSIRB-D-2021-292). Written informed consent was obtained from all patients.

Copyright

© 2023, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,636
    views
  • 335
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Fan
  2. Ping Lyu
  3. Ruiye Bi
  4. Chen Cui
  5. Ruoshi Xu
  6. Clifford J Rosen
  7. Quan Yuan
  8. Chenchen Zhou
(2023)
Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling
eLife 12:e82537.
https://doi.org/10.7554/eLife.82537

Share this article

https://doi.org/10.7554/eLife.82537

Further reading

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.