Abstract

Background: Sporadic venous malformation (VM) and angiomatosis of soft tissue (AST) are benign, congenital vascular anomalies affecting venous vasculature. Depending on the size and location of the lesion, symptoms vary from motility disturbances to pain and disfigurement. Due to high recurrence of the lesions more effective therapies are needed.

Methods: As targeting stromal cells has been an emerging concept in anti-angiogenic therapies, here, by using VM/AST patient samples, RNA-sequencing, cell culture techniques and a xenograft mouse model, we investigated the crosstalk of endothelial cells (EC) and fibroblasts and its effect on vascular lesion growth.

Results: We report, for the first time, expression and secretion of transforming growth factor A (TGFA) in ECs or intervascular stromal cells in AST and VM lesions. TGFA induced secretion of VEGF-A paracrinally, and regulated EC proliferation. Oncogenic PIK3CA variant in p.H1047R, a common somatic mutation found in these lesions, increased TGFA expression, enrichment of hallmark hypoxia, and in a mouse xenograft model, lesion size and vascularization. Treatment with afatinib, a pan-ErbB tyrosine-kinase inhibitor, decreased vascularization and lesion size in mouse xenograft model with ECs expressing oncogenic PIK3CA p.H1047R variant and fibroblasts.

Conclusions: Based on the data, we suggest that targeting of both intervascular stromal cells and ECs is a potential treatment strategy for vascular lesions having a fibrous component.

Funding: Academy of Finland, Ella and Georg Ehnrooth foundation, the ERC grants, Sigrid Jusélius Foundation, Finnish Foundation for Cardiovascular Research, Jane and Aatos Erkko Foundation, and Department of Musculosceletal and Plastic Surgery, Helsinki University Hospital.

Data availability

RNA-seq data has been submitted to NCBI Gene Expression Omnibus under accession numbers GSE130807 and GSE196311 (GEO reviewer access tokens; wbivkayaxhojdqp and mbehiikgvtmfryh, respectively).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Suvi Jauhiainen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  2. Henna Ilmonen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  3. Pia Vuola

    Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Heta Rasinkangas

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  5. Heidi H Pulkkinen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara Keränen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Miika Kiema

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Jade J Liikkanen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  9. Nihay Laham Karam

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8718-4612
  10. Svetlana Laidinen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  11. Mustafa Beter

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  12. Einari Aavik

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3018-9521
  13. Kimmo Lappalainen

    Department of Radiology, Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  14. Jouko Lohi

    Department of Pathology, Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  15. Johanna Aronniemi

    Department of Radiology, Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  16. Tiit Örd

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
  17. Minna U Kaikkonen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6294-0979
  18. Päivi Salminen

    Department of Pediatric Surgery, Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  19. Erkki Tukiainen

    Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  20. Seppo Ylä-Herttuala

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7593-2708
  21. Johanna P Laakkonen

    AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
    For correspondence
    johanna.p.laakkonen@uef.fi
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8556-9727

Funding

Academy of Finland (328835)

  • Johanna P Laakkonen

ERC grant (GA670951)

  • Seppo Ylä-Herttuala

ERC grant (802825)

  • Minna U Kaikkonen

Sigrid Jusélius Foundation

  • Seppo Ylä-Herttuala

Sigrid Jusélius Foundation

  • Minna U Kaikkonen

Finnish Foundation for Cardiovascular Research

  • Johanna P Laakkonen

Finnish Foundation for Cardiovascular Research

  • Seppo Ylä-Herttuala

Finnish Foundation for Cardiovascular Research

  • Minna U Kaikkonen

Jane and Aatos Erkko Foundation

  • Minna U Kaikkonen

Department of Musculosceletal and Plastic Surgery, Helsinki University Hospital

  • Pia Vuola

Academy of Finland (321535)

  • Johanna P Laakkonen

Academy of Finland (353376)

  • Johanna P Laakkonen

Academy of Finland (287478)

  • Minna U Kaikkonen

Academy of Finland (294073)

  • Minna U Kaikkonen

Ella and Georg Ehnrooth foundation

  • Johanna P Laakkonen

CoE of Cardiovascular and Metabolic Disease (307402)

  • Seppo Ylä-Herttuala

GeneCellNano Flagship Program (337120)

  • Johanna P Laakkonen

GeneCellNano Flagship Program (337120)

  • Seppo Ylä-Herttuala

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by National Experimental Animal Board of Finland (Decision No Esavi-2019-004672) and carried out in accordance with guidelines of the Finnish Act on Animal Experimentation.

Human subjects: Patient sample collection was approved by the Ethical Committee of the Helsinki University hospital, Helsinki, Finland (Decision No 127/13/03/02/2010 and No 1394/2020). Control sample collection was approved by the Research Ethics Committee of the Northern Savo Hospital District, Kuopio, Finland (Decision No 139/2015). Umbilical cord collection for HUVEC isolation was performed with approval from the Research Ethics Committee of the Northern Savo Hospital District, Kuopio, Finland (Decision No 341/2015). Informed consent, and consent to publish, was obtained from all patients included in the study.

Copyright

© 2023, Jauhiainen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 949
    views
  • 128
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suvi Jauhiainen
  2. Henna Ilmonen
  3. Pia Vuola
  4. Heta Rasinkangas
  5. Heidi H Pulkkinen
  6. Sara Keränen
  7. Miika Kiema
  8. Jade J Liikkanen
  9. Nihay Laham Karam
  10. Svetlana Laidinen
  11. Mustafa Beter
  12. Einari Aavik
  13. Kimmo Lappalainen
  14. Jouko Lohi
  15. Johanna Aronniemi
  16. Tiit Örd
  17. Minna U Kaikkonen
  18. Päivi Salminen
  19. Erkki Tukiainen
  20. Seppo Ylä-Herttuala
  21. Johanna P Laakkonen
(2023)
ErbB signalling is a potential therapeutic target for vascular lesions with fibrous component
eLife 12:e82543.
https://doi.org/10.7554/eLife.82543

Share this article

https://doi.org/10.7554/eLife.82543

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Krishna Rijal, Pankaj Mehta
    Research Article

    The Gillespie algorithm is commonly used to simulate and analyze complex chemical reaction networks. Here, we leverage recent breakthroughs in deep learning to develop a fully differentiable variant of the Gillespie algorithm. The differentiable Gillespie algorithm (DGA) approximates discontinuous operations in the exact Gillespie algorithm using smooth functions, allowing for the calculation of gradients using backpropagation. The DGA can be used to quickly and accurately learn kinetic parameters using gradient descent and design biochemical networks with desired properties. As an illustration, we apply the DGA to study stochastic models of gene promoters. We show that the DGA can be used to: (1) successfully learn kinetic parameters from experimental measurements of mRNA expression levels from two distinct Escherichia coli promoters and (2) design nonequilibrium promoter architectures with desired input–output relationships. These examples illustrate the utility of the DGA for analyzing stochastic chemical kinetics, including a wide variety of problems of interest to synthetic and systems biology.

    1. Cell Biology
    Laura Childers, Jieun Park ... Michel Bagnat
    Research Article

    Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome-rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene-assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to an increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.