Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra

  1. Juan Manuel Vazquez
  2. Maria T Pena
  3. Baaqeyah Muhammad
  4. Morgan Kraft
  5. Linda B Adams
  6. Vincent J Lynch  Is a corresponding author
  1. University of California, Berkeley, United States
  2. United States Department of Health and Human Services, United States
  3. University at Buffalo, State University of New York, United States

Abstract

The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: 1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; 2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; 3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and 4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer resistant group of mammals.

Data availability

All data generated or analysed during this study are included in the manuscript, supporting files, and data.

Article and author information

Author details

  1. Juan Manuel Vazquez

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8341-2390
  2. Maria T Pena

    National Hansen's Disease Program, United States Department of Health and Human Services, Baton Rouge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Baaqeyah Muhammad

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Morgan Kraft

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Linda B Adams

    National Hansen's Disease Program, United States Department of Health and Human Services, Baton Rouge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vincent J Lynch

    Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, United States
    For correspondence
    vjlynch@buffalo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5311-3824

Funding

Division of Intramural Research, National Institute of Allergy and Infectious Diseases (AAI15006)

  • Maria T Pena
  • Linda B Adams

National Institutes of Health (R56AG071860)

  • Vincent J Lynch

National Science Foundation (2028459)

  • Vincent J Lynch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Version history

  1. Preprint posted: August 5, 2022 (view preprint)
  2. Received: August 9, 2022
  3. Accepted: December 7, 2022
  4. Accepted Manuscript published: December 8, 2022 (version 1)
  5. Version of Record published: January 3, 2023 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,363
    views
  • 153
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Manuel Vazquez
  2. Maria T Pena
  3. Baaqeyah Muhammad
  4. Morgan Kraft
  5. Linda B Adams
  6. Vincent J Lynch
(2022)
Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra
eLife 11:e82558.
https://doi.org/10.7554/eLife.82558

Share this article

https://doi.org/10.7554/eLife.82558

Further reading

    1. Cancer Biology
    Célia Guérin, David Tulasne
    Review Article

    Tyrosine kinase inhibitors (TKI) directed against MET have been recently approved to treat advanced non-small cell lung cancer (NSCLC) harbouring activating MET mutations. This success is the consequence of a long characterization of MET mutations in cancers, which we propose to outline in this review. MET, a receptor tyrosine kinase (RTK), displays in a broad panel of cancers many deregulations liable to promote tumour progression. The first MET mutation was discovered in 1997, in hereditary papillary renal cancer (HPRC), providing the first direct link between MET mutations and cancer development. As in other RTKs, these mutations are located in the kinase domain, leading in most cases to ligand-independent MET activation. In 2014, novel MET mutations were identified in several advanced cancers, including lung cancers. These mutations alter splice sites of exon 14, causing in-frame exon 14 skipping and deletion of a regulatory domain. Because these mutations are not located in the kinase domain, they are original and their mode of action has yet to be fully elucidated. Less than five years after the discovery of such mutations, the efficacy of a MET TKI was evidenced in NSCLC patients displaying MET exon 14 skipping. Yet its use led to a resistance mechanism involving acquisition of novel and already characterized MET mutations. Furthermore, novel somatic MET mutations are constantly being discovered. The challenge is no longer to identify them but to characterize them in order to predict their transforming activity and their sensitivity or resistance to MET TKIs, in order to adapt treatment.

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.