Parallel evolution of reduced cancer risk and tumor suppressor duplications in Xenarthra
Abstract
The risk of developing cancer is correlated with body size and lifespan within species, but there is no correlation between cancer and either body size or lifespan between species indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Previously we showed that several large bodied Afrotherian lineages evolved reduced intrinsic cancer risk, particularly elephants and their extinct relatives (Proboscideans), coincident with pervasive duplication of tumor suppressor genes (Vazquez and Lynch 2021). Unexpectedly, we also found that Xenarthrans (sloths, armadillos, and anteaters) evolved very low intrinsic cancer risk. Here, we show that: 1) several Xenarthran lineages independently evolved large bodies, long lifespans, and reduced intrinsic cancer risk; 2) the reduced cancer risk in the stem lineages of Xenarthra and Pilosa coincided with bursts of tumor suppressor gene duplications; 3) cells from sloths proliferate extremely slowly while Xenarthran cells induce apoptosis at very low doses of DNA damaging agents; and 4) the prevalence of cancer is extremely low Xenarthrans, and cancer is nearly absent from armadillos. These data implicate the duplication of tumor suppressor genes in the evolution of remarkably large body sizes and decreased cancer risk in Xenarthrans and suggest they are a remarkably cancer resistant group of mammals.
Data availability
All data generated or analysed during this study are included in the manuscript, supporting files, and data.
Article and author information
Author details
Funding
Division of Intramural Research, National Institute of Allergy and Infectious Diseases (AAI15006)
- Maria T Pena
- Linda B Adams
National Institutes of Health (R56AG071860)
- Vincent J Lynch
National Science Foundation (2028459)
- Vincent J Lynch
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,641
- views
-
- 181
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Cell Biology
Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.
-
- Cancer Biology
TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.