Schema-based predictive eye movements support sequential memory encoding

  1. Jiawen Huang  Is a corresponding author
  2. Isabel Velarde
  3. Wei Ji Ma
  4. Christopher Baldassano
  1. Columbia University, United States
  2. New York University, United States

Abstract

When forming a memory of an experience that is unfolding over time, we can use our schematic knowledge about the world (constructed based on many prior episodes) to predict what will transpire. We developed a novel paradigm to study how the development of a complex schema influences predictive processes during perception and impacts sequential memory. Participants learned to play a novel board game ('4-in-a-row') across six training sessions, and repeatedly performed a memory test in which they watched and recalled sequences of moves from the game. We found that participants gradually became better at remembering sequences from the game as their schema developed, driven by improved accuracy for schema-consistent moves. Eye tracking revealed that increased predictive eye movements during encoding, which were most prevalent in expert players, were associated with better memory. Our results identify prediction as a mechanism by which schematic knowledge can improve episodic memory.

Data availability

All the data is openly available through https://osf.io/29cpg/

The following data sets were generated

Article and author information

Author details

  1. Jiawen Huang

    Columbia University, New York, United States
    For correspondence
    jh4290@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1362-0412
  2. Isabel Velarde

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5639-0907
  3. Wei Ji Ma

    Department of Psychology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9835-9083
  4. Christopher Baldassano

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3540-5019

Funding

Columbia University (Graduate Student Fellowship)

  • Jiawen Huang

Columbia University (start-up funding)

  • Christopher Baldassano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Huan Luo, Peking University, China

Ethics

Human subjects: The experimental protocol was approved by the Institutional Review Board of Columbia University. (AAAS0252) All participants were over 18 years of age with normal or corrected-to-normal vision, and gave informed consent.

Version history

  1. Preprint posted: July 20, 2022 (view preprint)
  2. Received: August 10, 2022
  3. Accepted: March 24, 2023
  4. Accepted Manuscript published: March 27, 2023 (version 1)
  5. Version of Record published: April 12, 2023 (version 2)

Copyright

© 2023, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiawen Huang
  2. Isabel Velarde
  3. Wei Ji Ma
  4. Christopher Baldassano
(2023)
Schema-based predictive eye movements support sequential memory encoding
eLife 12:e82599.
https://doi.org/10.7554/eLife.82599

Share this article

https://doi.org/10.7554/eLife.82599

Further reading

    1. Neuroscience
    Olivier Codol, Jonathan A Michaels ... Paul L Gribble
    Tools and Resources

    Artificial neural networks (ANNs) are a powerful class of computational models for unravelling neural mechanisms of brain function. However, for neural control of movement, they currently must be integrated with software simulating biomechanical effectors, leading to limiting impracticalities: (1) researchers must rely on two different platforms and (2) biomechanical effectors are not generally differentiable, constraining researchers to reinforcement learning algorithms despite the existence and potential biological relevance of faster training methods. To address these limitations, we developed MotorNet, an open-source Python toolbox for creating arbitrarily complex, differentiable, and biomechanically realistic effectors that can be trained on user-defined motor tasks using ANNs. MotorNet is designed to meet several goals: ease of installation, ease of use, a high-level user-friendly application programming interface, and a modular architecture to allow for flexibility in model building. MotorNet requires no dependencies outside Python, making it easy to get started with. For instance, it allows training ANNs on typically used motor control models such as a two joint, six muscle, planar arm within minutes on a typical desktop computer. MotorNet is built on PyTorch and therefore can implement any network architecture that is possible using the PyTorch framework. Consequently, it will immediately benefit from advances in artificial intelligence through PyTorch updates. Finally, it is open source, enabling users to create and share their own improvements, such as new effector and network architectures or custom task designs. MotorNet’s focus on higher-order model and task design will alleviate overhead cost to initiate computational projects for new researchers by providing a standalone, ready-to-go framework, and speed up efforts of established computational teams by enabling a focus on concepts and ideas over implementation.

    1. Neuroscience
    Meike E van der Heijden, Amanda M Brown ... Roy V Sillitoe
    Research Article

    The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.