Abstract

Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is co-expressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC.

Data availability

RNA sequencing data have been deposited to GEO database with accession number GSE174087.Mass spec raw data sets have been deposited in the Japan ProteOmeSTandard Repository (https://repository.jpostdb.org/) (98). The accession numbers are PXD029529 for ProteomeXchange (99) and JPST001321 for jPOST. The access link is https://repository.jpostdb.org/preview/1370203119618182ba1c0f2

The following data sets were generated

Article and author information

Author details

  1. Erika K Ramos

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    Erika K Ramos, has patents on exosomes which are not related to this manuscript..
  2. Chia-Feng Tsai

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6514-6911
  3. Yuzhi Jia

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  4. Yue Cao

    Department of Electrical and Computer Engineering, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  5. Megan Manu

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Rokana Taftaf

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  7. Andrew D Hoffmann

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    Andrew D Hoffmann, has patents on exosomes which are not related to the paper..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5479-944X
  8. Lamiaa El-Shennawy

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    Lamiaa El-Shennawy, has patents on exosomes which are not related to the paper..
  9. Marina A Gritsenko

    Biological Science Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9992-9829
  10. Valery Adorno-Cruz

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  11. Emma J Schuster

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    Emma J Schuster, has patents on exosomes which are not related to the paper..
  12. David Scholten

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  13. Dhwani Patel

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  14. Xia Liu

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    No competing interests declared.
  15. Priyam Patel

    Quantitative Data Science Core, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9433-5017
  16. Brian Wray

    Quantitative Data Science Core, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  17. Youbin Zhang

    Department of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  18. Shanshan Zhang

    Pathology Core Facility, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  19. Ronald J Moore

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    No competing interests declared.
  20. Jeremy V Mathews

    Northwestern University, Chicago, IL, United States
    Competing interests
    No competing interests declared.
  21. Matthew J Schipma

    Quantitative Data Science Core, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0865-1057
  22. Tao Liu

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9529-6550
  23. Valerie L Tokars

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  24. Massimo Cristofanilli

    Department of Medicine, Northwestern University, Chicago, United States
    Competing interests
    No competing interests declared.
  25. Tujin Shi

    Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    No competing interests declared.
  26. Yang Shen

    Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1703-7796
  27. Nurmaa K Dashzeveg

    Department of Pharmacology, Northwestern University, Chicago, United States
    Competing interests
    Nurmaa K Dashzeveg, has patents on exosomes which are not related to this manuscript..
  28. Huiping Liu

    Pathology Core Facility, Northwestern University, Chicago, United States
    For correspondence
    huiping.liu@northwestern.edu
    Competing interests
    Huiping Liu, is scientific co-founder of ExoMira Medicine, Inc and has patents related to exosome therapeutics which are not related to the scientific discoveries of this paper..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4822-7995

Funding

National Cancer Institute (R01CA245699)

  • Erika K Ramos
  • Huiping Liu

National Institute of General Medical Sciences (R35GM124952)

  • Yang Shen

U.S. Department of Defense (W81XWH-16-1-0021)

  • Huiping Liu

Susan G. Komen (CCR18548501)

  • Xia Liu

American Cancer Society (ACS127951-RSG-15-025-01-CSM)

  • Huiping Liu

National Cancer Institute (T32 CA009560)

  • Erika K Ramos

National Cancer Institute (T32GM008061)

  • Emma J Schuster

National Science Foundation (CCF-1943008)

  • Yang Shen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice used in this study were kept in specific pathogen-free facilities in the Animal Resources Center at Northwestern University. All animal procedures complied with the NIH Guidelines for the Care and Use of Laboratory Animals and were approved by the respective Institutional Animal Care and Use Committees.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,086
    views
  • 543
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erika K Ramos
  2. Chia-Feng Tsai
  3. Yuzhi Jia
  4. Yue Cao
  5. Megan Manu
  6. Rokana Taftaf
  7. Andrew D Hoffmann
  8. Lamiaa El-Shennawy
  9. Marina A Gritsenko
  10. Valery Adorno-Cruz
  11. Emma J Schuster
  12. David Scholten
  13. Dhwani Patel
  14. Xia Liu
  15. Priyam Patel
  16. Brian Wray
  17. Youbin Zhang
  18. Shanshan Zhang
  19. Ronald J Moore
  20. Jeremy V Mathews
  21. Matthew J Schipma
  22. Tao Liu
  23. Valerie L Tokars
  24. Massimo Cristofanilli
  25. Tujin Shi
  26. Yang Shen
  27. Nurmaa K Dashzeveg
  28. Huiping Liu
(2022)
Machine learning-assisted elucidation of CD81-CD44 interactions in promoting cancer stemness and extracellular vesicle integrity
eLife 11:e82669.
https://doi.org/10.7554/eLife.82669

Share this article

https://doi.org/10.7554/eLife.82669

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.